Profiles in understanding the density of rational numbers among primary and secondary school students

Authors

DOI:

https://doi.org/10.35763/aiem22.4034

Keywords:

Rational numbers, Density, Discreteness, Learner profiles, Fractions

Abstract

The present cross-sectional study investigated 953 fifth to tenth grade students’ understanding of the dense structure of rational numbers. After an inductive analysis, coding the answers based on three types of items on density, a TwoStep Cluster Analysis revealed different intermediate profiles in the understanding of density along grades. The analysis highlighted qualitatively different ways of thinking: i) the idea of consecutiveness, ii) the idea of a finite number of numbers, and iii) the idea that between fractions, there are only fractions, and between decimals, there are only decimals. Furthermore, our profiles showed differences regarding rational number representation since students first recognised the dense nature of decimal numbers and then of fractions. Learners, however, were still found to have a natural number-based idea of the rational number structure by the end of secondary school, especially when they had to write a number between two pseudo-consecutive rational numbers.

Downloads

Download data is not yet available.

References

Broitman, C., Itzcovich, H., & Quaranta, M. E. (2003). La enseñanza de los números deci-males: el análisis del valor posicional y una aproximación a la densidad. Revista La-tinoamericana de Investigación en Matemática Educativa, 6(1), 5-26.

Carpenter, T. P., Fennema, E., & Romberg, T. A. (Eds.) (1993). Rational numbers: An inte-gration of research. Erlbaum.

DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39-49. https://doi.org/10.1016/j.learninstruc.2014.07.002

Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16, 3-17. https://doi.org/10.2307/748969

González-Forte, J. M., Fernández, C., & Llinares, S. (2018). La influencia del conocimiento de los números naturales en la comprensión de los números racionales. In L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García, & A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 241-250). SEIEM.

González-Forte, J. M., Fernández, C., Van Hoof, J., & Van Dooren, W. (2020). Various ways to determine rational number size: an exploration across primary and secondary education. European Journal of Psychology of Education, 35(3), 549-565. https://doi:10.1007/s10212-019-00440-w

González-Forte, J. M., Fernández, C., Van Hoof, J., & Van Dooren, W. (2021). Profiles in understanding operations with rational numbers. Mathematical Thinking and Learning, 24(3), 230-247. https://doi.org/10.1080/10986065.2021.1882287

Khoury, H. A., & Zazkis, R. (1994). On fractions and non-standard representations: Pre-service teachers’ concepts. Educational Studies in Mathematics, 27(2), 191–204. https://doi.org/10.1007/BF01278921

Kieren, T. E. (1993). Rational and fractional numbers: From quotient fields to recursive understanding. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 49-84). Lawrence Erlbaum Associates, Inc.

Markovits, Z., & Sowder, J. T. (1991). Students' understanding of the relationship be-tween fractions and decimals. Focus on Learning Problems in Mathematics, 13(1), 3-11.

McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept(s). Learning and In-struction, 37, 14-20. https://doi.org/10.1016/j.learninstruc.2013.12.004

McMullen, J., & Van Hoof, J. (2020). The role of rational number density knowledge in mathematical development. Learning and Instruction, 65. https://doi.org/10.1016/j.learninstruc.2019.101228

Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: Understand-ing the real numbers. In M. Limon, & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 233-258). Kluwer Academic Publishers.

Moss, J. (2005). Pipes, tubs, and beakers: New approaches to teaching the rational-number system. In M. S. Donovan, & Bransford, J. D. (Eds.), How students learn: History, Math, and Science in the classroom (pp. 309-349). National Academies Press.

Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3

Tirosh, D., Fischbein, E., Graeber, A. O., & Wilson, J. W. (1999). Prospective elementary teachers’ conceptions of rational numbers. http://jwilson.coe.uga.edu/Texts.Folder/Tirosh/Pros.El.Tchrs.html

Vamvakoussi, X., Christou, K. P., Mertens, L., & Van Dooren, W. (2011). What fills the gap between discrete and dense? Greek and Flemish students’ understanding of densi-ty. Learning and Instruction, 21(5), 676-685. https://doi.org/10.1016/j.learninstruc.2011.03.005

Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathe-matical Behavior, 31(3), 344-355. https://doi.org/10.1016/j.jmathb.2012.02.001

Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of ra-tional numbers: A conceptual change approach. Learning and Instruction, 14(5), 453-467.

Vamvakoussi, X., & Vosniadou, S. (2007). How many numbers are there in a rational numbers interval? Constraints, synthetic models and the effect of the number line. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 265-282). Elsevier.

Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational num-bers and their notation. Cognition and Instruction, 28(2), 181-209. https://doi.org/10.1080/07370001003676603

Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natu-ral and rational numbers. Learning and Instruction, 37, 1-4. https://doi.org/10.1016/j.learninstruc.2015.01.001

Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2015). Inappropriately applying natural number properties in rational number tasks: Characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1), 39-56. https://doi.org/10.1007/s10649-015-9613-3

Downloads

Published

2022-10-31

How to Cite

González Forte, J. M., Fernández, C., Van Hoof, J., & Van Dooren, W. (2022). Profiles in understanding the density of rational numbers among primary and secondary school students. Advances of Research in Mathematics Education, (22), 47–70. https://doi.org/10.35763/aiem22.4034

Issue

Section

Artículos