Assimilation and accommodation mechanisms in the thematization of the derivative Schema

Authors

DOI:

https://doi.org/10.35763/aiem21.4241

Keywords:

Schema, Thematization, Accommodation, Assimilation, Derivative
Supporting Agencies
Agencia Nacional de Investigación y Desarrollo de Chile (Fondecyt 11180899), MINECO-ESPAÑA (PID2019-104964GB-I00 y PID2020-116514GB-I00), GIPEAM (SGR-2017-101), University of Texas System, Consejo Nacional de Ciencia y Tecnología de México (CONACYT) [número de subvención 2019-35]

Abstract

In this article, Action-Process-Object-Schema (APOS) theory is used to examine the thematization of the derivative Schema and the role played by the equilibration mechanisms evidenced by some advanced students while facing tasks designed to confront the equilibrium of their Schemas and obtain thematization evidence. This investigation contributes to the study of Schema thematization by focusing on the mechanisms involved when students need to perform Action on their derivative Schema. Results show evidences on the role that accommodation and assimilation mechanisms play in students’ strategies when they re-equilibrate their Schema and evidence its thematization Which has not received previous attention.

Downloads

Download data is not yet available.

References

Artigue, M. (1995). La enseñanza de los principios del Cálculo: Problemas epistemológicos, cognitivos y didácticos. En M. Artigue, R. Douady & P. Gómez (Eds.), Ingeniería didáctica en educación matemática (pp. 97-140). Grupo Editorial Iberoamérica.

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2014). APOS theory: A Framework for Research and Curriculum Development in Mathematics Education. Springer.

Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. (1997). The Development of Students’ Graphical Understanding of the Derivate. Journal of Mathematics Behavior, 16(4), 399-430. https://doi.org/10.1016/S0732-3123(97)90015-8

Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. Journal for research in mathematics education, 31(5), 557-578. https://doi.org/10.2307/749887

Cooley, L., Trigueros, M., & Baker, B. (2007). Schema thematization: A framework and an example. Journal for Research in Mathematics Education, 38(4), 370-392. https://doi.org/10.2307/30034879

Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2016). Mathematical objects through the lens of two different theoretical perspectives: APOS and OSA. Educational Studies in Mathematics, 91(1), 107-122. https://doi.org/10.1007/s10649-015-9639-6

Fuentealba, C., Badillo, E., & Sánchez-Matamoros, G. (2019). Identificación y caracterización de los subniveles de desarrollo del esquema de derivada. Enseñanza de las Ciencias, 37(2), 63-84. https://doi.org/10.5565/rev/ensciencias.2518

Fuentealba, C., Sánchez-Matamoros, G., Badillo, E., & Trigueros, M. (2017). Thematization of derivative schema in university students: nuances in constructing relations between a function's successive derivatives. International Journal of Mathematical Education in Science and Technology, 48(3), 374-392. https://doi.org/10.1080/0020739X.2016.1248508

García, M., Llinares, S., & Sánchez-Matamoros, G. (2011). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education, 9(5), 1023-1045. https://doi.org/10.1007/s10763-010-9227-2

Lerman, S. (2014). Encyclopedia of Mathematics Education (pp. 579-582). Springer.

Pepin, B., Biehler, R. & Gueudet, G. (2021). Mathematic in Engineering Education; a Review of Recent Literature with a View towards Innovative Practices. International Journal of Research in Undergraduate Mathematics Education, 7, 168-188. https://doi.org/10.1007/s40753-021-00139-8

Piaget, J. (1975). L’équilibration des structures cognitives. Presses Universitaires de France.

Piaget, J., & García, R. (1982). Psicogénesis e Historia de la Ciencia. Siglo Veintiuno Editores S.A.

Roa-Fuentes, S., & Oktaç, A. (2010). Construcción de una descomposición genética: Análisis teórico del concepto de transformación lineal. Relime, 13(1), 89-112.

Sánchez-Matamoros, G., García, M., & Llinares, S. (2006). El desarrollo del esquema de derivada. Enseñanza de las Ciencias, 24(1), 85-98.

Trigueros, M. (2019). The development of a Linear Algebra schema: learning as result of the use of a cognitive theory and models. ZDM, 51(7), 1055-1068. https://doi.org/10.1007/s11858-019-01064-6

Trigueros, M. (2005). La noción de Esquema en la investigación en matemática educativa a nivel superior. Educación Matemática, 17(1), 5-31.

Trigueros, M., & Oktaç, A. (2005). La théorie APOS et l’enseignement de l’Algèbre Linéaire. Annales de Didactique et de Sciences Cognitives, 10, 157–176.

Vrancken, S., & Engler, A. (2014). Una Introducción a la Derivada desde la Variación y el Cambio: resultados de una investigación con estudiantes de primer año de la universidad. Bolema, 28(48), 449-468. https://doi.org/10.1590/1980-4415v28n48a22

Published

2022-04-26

How to Cite

Fuentealba, C., Trigueros, M., Sánchez-Matamoros, G., & Badillo, E. (2022). Assimilation and accommodation mechanisms in the thematization of the derivative Schema. Advances of Research in Mathematics Education, (21), 23–44. https://doi.org/10.35763/aiem21.4241