Análisis bibliométrico sobre pensamiento algebraico en educación infantil y primaria en Scopus
DOI:
https://doi.org/10.35763/aiem27.5825Palabras clave:
Álgebra, Bibliometría, Matemáticas, Pensamiento algebraico, Producción científicaResumen
En este trabajo presentamos un análisis bibliométrico cuyo objetivo es cuantificar y describir la producción científica sobre pensamiento algebraico en educación infantil y primaria. Desarrollamos este análisis dentro de la base de datos Scopus, por ser una de las de mayor cobertura a nivel de revistas y volumen de citación en el ámbito internacional. Consideramos los rangos de búsqueda inicial abierto y final hasta diciembre de 2022. Los resultados muestran un creciente interés de la comunidad investigadora en la Didáctica de la Matemática por el pensamiento algebraico en estos niveles educativos. Identificamos autores que han producido una gran cantidad de investigaciones en este tema, como a grupos de autores que han colaborado en distintos trabajos. Además de los términos clave como early algebra, functional thinking y generalization que destacan como temas prominentes en esta área de estudio.
Descargas
Citas
Adamuz-Povedano, N., Jiménez-Fanjul, N., & Maz-Machado, A. (2013). Búsqueda de descriptores que caractericen una disciplina emergente en WoS y SCOPUS: el caso de la Educación Matemática. Biblios: Revista Electrónica de Ciencias de la Información, 50, 1–15. https://doi.org/10.5195/BIBLIOS.2013.80
Andini, M., & Prabawanto, S. (2021). Relational thinking in early algebra learning: A systematic literature review. Journal of Physics: Conference Series, 1806(1), 012086. https://doi.org/10.1088/1742-6596/1806/1/012086
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Becerra, L. D. A. (2014). Estudio bibliométrico sobre uso de métodos y técnicas cua-litativas en investigación publicada en bases de datos de uso común entre el 2011–2013. Revista Iberoamericana de Psicología, 7(2), 67–76.
Blanton, M. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Heinemann.
Blanton, M., & Kaput, J. J. (2004). Elementary grade students’ capacity for func-tional thinking. En M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 135–142). PME.
Blanton, M. L., & Kaput, J. J. (2005). Characterizing a classroom practice that pro-motes algebraic reasoning. Journal for research in mathematics education, 36(5), 412-446.
Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in 6-year-olds’ thinking about generalizing functional relationships. Journal for research in mathematics education, 46(5), 511-558. https://doi.org/10.5951/jresematheduc.46.5.0511
Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J. S. (2015). The development of children’s algebraic thinking: The impact of a compre-hensive early algebra intervention in third grade. Journal for Research in Math-ematics Education, 46(1), 39–87. https://doi.org/10.5951/jresematheduc.46.1.0039
Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathemat-ics, 95, 181-202. https://doi.org/10.1007/s10649-016-9745-0
Bracho-López, R., Torralbo-Rodríguez, M., Maz-Machado, A., & Adamuz-Povedano, N. (2014). Thematic research trends in mathematics education in Spain. Bolema – Mathematics Education Bulletin, 28(50), 1077–1094. https://doi.org/10.1590/1980-4415v28n50a04
Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A., & Murphy Gardiner, A. (2015). Children’s use of variables and variable notation to represent their algebraic ideas. Mathematical Thinking and Learning, 17(1), 34-63. https://doi.org/10.1080/10986065.2015.981939
Burgos, M., Beltrán-Pellicer, P., & Godino, J. D. (2018). Pensamiento algebraico temprano de alumnos de quinto de primaria en la resolución de una tarea de proporcionalidad. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar González, P. Alonso, F. J. García García, & A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 181–190). SEIEM.
Cai, J., & Knuth, E. (2011). Early algebraization: A global dialogue from multiple per-spectives. Springer. https://doi.org/10.1007/978-3-642-17735-4
Callejo, M. L., García-Reche, A., & Fernández, C. (2016). Pensamiento algebraico temprano de estudiantes de educación primaria (6–12 años) en problemas de generalización de patrones lineales. Avances de Investigación en Educación Ma-temática, 10, 5–25. https://doi.org/10.35763/aiem.v0i10.106
Cañadas, M. C. (2016). Álgebra escolar: un enfoque funcional. UNO: Revista de Didác-tica de las Matemáticas, 73, 7–13.
Cañadas, M. C. (2023). Una panorámica de las investigaciones sobre pensamiento numérico y pensamiento algebraico. En C. Jiménez-Gestal, Á. A. Magreñán, E. Badillo, & P. Ivars (Eds.), Investigación en Educación Matemática XXVI (pp. 3–9). SEIEM.
Carraher, D. W., & Schliemann, A. D. (2018). Cultivating early algebraic thinking. En Teaching and Learning Algebraic Thinking with 5-to 12-Year-Olds (pp. 107–138). Springer. https://doi.org/10.1007/978-3-319-68351-5_5
Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40, 3-22. https://doi.org/10.1007/s11858-007-0067-7
Castro, E. (2012). Dificultades en el aprendizaje del álgebra escolar. En A. Estepa, Á. Contreras, J. Deulofeu, M. C. Penalva, F. J. García, & L. Ordóñez (Eds.), Investi-gación en Educación Matemática XVI (pp. 75–94). SEIEM.
Chimoni, M., Pitta-Pantazi, D., & Christou, C. (2018). Examining early algebraic thinking: Insights from empirical data. Educational Studies in Mathematics, 98, 57–76. https://doi.org/10.1007/s10649-018-9803-x
Donoghue, E. F. (2001). Mathematics education in the United States: Origins of the field and the development of early graduate programs. En R. Reys & J. Kilpat-rick (Eds.), One field, many paths: US Doctoral programs in mathematics educa-tion. American Mathematical Society. https://doi.org/10.1090/cbmath/009/01
Eck, N. J. V., & Waltman, L. (2009). How to normalize cooccurrence data? An analy-sis of some well‐known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651. https://doi.org/10.1002/asi.21075
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weak-nesses. The FASEB journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF
Fuentes, S., & Cañadas, M. C. (2022). Evidencias de pensamiento funcional en una niña de 4 años: Estrategias y representaciones. En T. F. Blanco, C. Núñez-García, M. C. Cañadas, & J. A. González-Calero (Eds.), Investigación en Educa-ción Matemática XXV (pp. 269–276). SEIEM.
Glänzel, W., & Schubert, A. (2004). Analysing scientific networks through co-authorship. In Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 257-276). Springer Netherlands. https://doi.org/10.1007/1-4020-2755-9_12
Goñi-Cervera, J., Cañadas, M. C., & Polo-Blanco, I. (2022). Generalisation in stu-dents with autism spectrum disorder: an exploratory study of strategies. ZDM, 54(6), 1333-1347. https://doi.org/10.1007/s11858-022-01415-w
Hidalgo-Moncada, D., & Cañadas, M. C. (2020). Intervenciones en el trabajo con una tarea de generalización que involucra las formas directa e inversa de una fun-ción en sexto de primaria. PNA, 14(3), 204–225. https://doi.org/10.30827/pna.v14i3.11378
Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Profes-sional development focused on children’s algebraic reasoning in elementary school. Journal for research in mathematics education, 38(3), 258-288.
Jiménez-Fanjul, N., Adamuz-Povedano, N., Maz-Machado, A., Bracho-López, R., Lupiáñez, J. L., & Segovia, I. (2011). Producción científica internacional en educación matemática en SSCI y SCOPUS (1980–2009): Construcción de des-criptores. En J. L. Lupiáñez, M. C. Cañadas, M. Molina, M. Palarea, & A. Maz (Eds.), Investigaciones en Pensamiento Numérico y Algebraico e Historia de la Matemática y Educación Matemática 2011 (pp. 325–335). Universidad de Gra-nada.
Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? En J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Lawrence Erlbaum Associates. https://doi.org/10.4324/9781315097435-2
Kieran, C. (1996). The changing face of school algebra. En C. Alsina, J. Álvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), Proceedings of the 8th international con-gress on mathematical education: Selected lectures (pp. 271–290). SAEM Thales.
Kieran, C. (2004). Algebraic thinking in the early grades: What is it. The Mathematics Educator, 8(1), 139–151.
Kieran, C. (2022). The multi-dimensionality of early algebraic thinking: Back-ground, overarching dimensions, and new directions. ZDM, 54(6), 1131-1150. https://doi.org/10.1007/s11858-022-01435-6
Kriegler, S. (2007). Just what is algebraic thinking? Mathematics Teaching in the Mid-dle School, 13(8), 430–435.
Lee, K., Ng, E. L., & Ng, S. F. (2009). The contributions of working memory and ex-ecutive functioning to problem representation and solution generation in al-gebraic word problems. Journal of educational psychology, 101(2), 373. https://doi.org/10.1037/a0013843
Lins, R., & Kaput, J. J. (2004). The early development of algebraic reasoning: The current state of the field. En K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra. Proceedings of the 12th ICMI study confer-ence (pp. 47–70). Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-8131-6_4
Martín-Martín, A., Thelwall, M., Orduna-Malea, E., & Delgado López-Cózar, E. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Sci-ence, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics, 126(1), 871–906. https://doi.org/10.1007/s11192-020-03690-4
Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particu-lar. Educational studies in mathematics, 15, 277-289. https://doi.org/10.1007/BF00312078
Maz, A., Torralbo, M., Hidalgo, M., & Bracho-López, R. (2009). Los simposios de la Sociedad Española de Investigación en Educación Matemática: Una revisión bibliométrica. En M. J. González, M. T. González, & J. Murillo (Eds.), Investiga-ción en Educación Matemática XIII (pp. 323–331). SEIEM.
Merino, E., Cañadas, M. C., & Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de educación primaria en una tarea de generalización. Edma 0–6: Educación Matemática en la Infancia, 2(1), 24–40. https://doi.org/10.24197/edmain.1.2013.24-40
Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/BF03217544
Ministerio de Educación (MINEDUC). (2012). Bases curriculares Primero a Sexto Bási-co. Chile.
Ministerio de Educación y Formación Profesional. (2022). Real decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. BOE, 52, 24386–24504.
Molina, M. (2007). La integración del pensamiento algebraico en educación prima-ria. En M. Camacho, P. Flores, & M. P. Bolea (Eds.), Investigación en Educación Matemática (pp. 53–70). SEIEM.
Molina, M. (2009). Una propuesta de cambio curricular: Integración del pensa-miento algebraico en educación primaria. PNA, 3(3), 135–156.
Narváez, R., & Cañadas, M. C. (2023). Mediaciones realizadas a estudiantes de se-gundo de primaria en una tarea de generalización. PNA, 17(3), 239–264. https://doi.org/10.30827/pna.v17i3.24153
National Council of Teachers of Mathematics (NCTM). (2000). Principles and stand-ards for school mathematics. Autor.
Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the develop-ment of preschoolers’ mathematical patterning. Journal for Research in Math-ematics Education, 42(3), 237-268. https://doi.org/10.5951/jresematheduc.42.3.0237
Pinto, E., Cañadas, M. C., & Moreno, A. (2022). Functional relationships evidenced and representations used by third graders within a functional approach to early algebra. International Journal of Science and Mathematics Education, 20(6), 1183–1202.
Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis. Educational studies in mathematics, 42, 237-268. https://doi.org/10.1023/A:1017530828058
Radford, L. (2008). Iconicity and contraction: A semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM, 40(1), 83-96. https://doi.org/10.1007/s11858-007-0061-0
Radford, L. (2014). The progressive development of early embodied algebraic think-ing. Mathematics Education Research Journal, 26, 257-277. https://doi.org/10.1007/s13394-013-0087-2
Reys, R. E., & Kilpatrick, J. (2001). One field, many paths: US Doctoral programs in Mathematics Education (Vol. 9). American Mathematical Society. https://doi.org/10.1090/cbmath/009/01
Scopus. (S/f). Recuperado el 21 de abril de 2023, de http://www.scopus.com/
Sibgatullin, I. R., Korzhuev, A. V., Khairullina, E. R., Sadykova, A. R., Baturina, R. V., & Chauzova, V. (2022). A systematic review on algebraic thinking in education. Eurasia Journal of Mathematics, Science and Technology Education, 18(1), em2065. https://doi.org/10.29333/ejmste/11486
Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal cover-age of Web of Science, Scopus and Dimensions: A comparative analysis. Scien-tometrics, 126(6), 5113–5142. https://doi.org/10.1007/s11192-021-03948-5
Stephens, A., Blanton, M., Knuth, E., Isler, I., & Gardiner, A. M. (2015). Just say yes to early algebra! Teaching Children Mathematics, 22(2), 92–101. https://doi.org/10.5951/teacchilmath.22.2.0092
Torres, M. D., Cañadas, M. C., & Moreno, A. (2019). Estructuras y representaciones de alumnos de 2º de primaria en una aproximación funcional del pensamiento algebraico. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano, & Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 573–582). SEIEM.
Vallejo-Ruiz, M. (2005). Estudio longitudinal de la producción española de tesis docto-rales en Educación Matemática (1975–2002) [Tesis doctoral sin publicar]. Uni-versidad de Granada.
Ventura, A. C., Brizuela, B. M., Blanton, M., Sawrey, K., Gardiner, A. M., & Newman-Owens, A. (2021). A learning trajectory in kindergarten and first grade stu-dents’ thinking of variable and use of variable notation to represent indeter-minate quantities. The Journal of Mathematical Behavior, 62, 100866. https://doi.org/10.1016/j.jmathb.2021.100866
Vukovic, R. K., & Lesaux, N. K. (2013). The language of mathematics: Investigating the ways language counts for children’s mathematical development. Journal of Experimental Child Psychology, 115(2), 227-244. https://doi.org/10.1016/j.jecp.2013.02.002
Warren, E., & Cooper, T. (2008). Generalising the pattern rule for visual growth pat-terns: Actions that support 8 year olds’ thinking. Educational Studies in mathe-matics, 67, 171-185. https://doi.org/10.1007/s10649-007-9092-2
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Romina Narváez, Natividad Adamuz-Povedano, María C. Cañadas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los trabajos se publican bajo una licencia de Creative Commons: Reconocimiento 4.0 España a partir del número 21 (2022).
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y el reconocimiento de la autoría.
- Los textos publicados en esta revista están sujetos –si no se indica lo contrario– a una licencia de Reconocimiento 4.0 Internacional de Creative Commons. Puede copiarlos, distribuirlos, comunicarlos públicamente, hacer obras derivadas y usos comerciales siempre que reconozca los créditos de las obras (autoría, nombre de la revista, institución editora) de la manera especificada por los autores o por la revista. La licencia completa se puede consultar en http://creativecommons.org/licenses/by/4.0.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Datos de los fondos
-
Agencia Estatal de Investigación
Números de la subvención PID2020-113601GB-I00 -
Agencia Nacional de Investigación y Desarrollo
Números de la subvención 72210075