Conexiones matemáticas en las estrategias de solución de problemas de álgebra de profesores de matemáticas de secundaria en formación

Autores/as

DOI:

https://doi.org/10.35763/aiem25.6354

Palabras clave:

Álgebra, Conexiones matemáticas, Estrategias de solución, Futuros profesores de matemáticas de secundaria

Resumen

Este estudio investigó las conexiones matemáticas encontradas en las soluciones proporcionadas por 22 futuros profesores de matemáticas de secundaria a un conjunto de problemas de álgebra. El interés y la investigación sobre las conexiones matemáticas han ganado importancia en la última década. Se utiliza la Teoría Extendida de las Conexiones Matemáticas o ETMC para explorar los tipos de conexiones que este marco captura y no captura en las soluciones de los futuros profesores. El ETMC reveló cuatro tipos de conexiones matemáticas en cuatro problemas: “representaciones diferentes”, “procedimiento”, “parte-todo” y “significado”. Los otros tipos de conexiones definidas en ETMC, como “reversibilidad” o “característica”, no se encontraron en nuestros datos, quizás debido a los problemas específicos que se utilizaron. Algunas conexiones matemáticas no se pusieron de manifiesto al examinar las soluciones a través de ETMC (“significado”, “implicación o si/entonces” y modelado), mostrando áreas en las que ETMC podría tener una capacidad limitada para ayudar a los investigadores a identificar conexiones matemáticas en diferentes contextos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Australian Curriculum, Assessment and Reporting Authority (2022). The Australian Curriculum: Mathematics. Author.

Businskas, A.M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Unpublished doctoral dissertation]. Simon Fraser University, Canada.

Common Core State Standards Initiative (2022). Standards for Mathematical Practice. Author.

Department for Education (2021). National curriculum in England: Mathematics programmes of study. Gov. UK.

Dogan, H., Shear, E., Contreras, A.F.G., & Hoffman, L. (2022). Linear independence from a perspective of connections. International Journal of Mathematical Education in Science and Technology, 53(1), 190-205. https://doi.org/10.1080/0020739X.2021.1961031

Dolores-Flores, C., Rivera-López, M.I., & García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050

Eli, J.A., Mohr-Schroeder, M.J., & Lee, C.W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23, 297-319. https://doi.org/10.1007/s13394-011-0017-0

García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.1355994

García-García, J., & Dolores-Flores, C. (2021). Exploring pre-university students’ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 912-936. https://doi.org/10.1080/0020739X.2020.1729429

Hatisaru, V. (2022). Investigating secondary mathematics teachers’ analogies to function. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2022.2032440

Hatisaru, V. (2023). Mathematical connections established in the teaching of functions. Teaching Mathematics and its Applications: An International Journal of the IMA, 42(3), 207-227. https://doi.org/10.1093/teamat/hrac013

Ito-Hino, K. (1995). Students’ reasoning and mathematical connections in the Japanese classroom. In P. House, & A.F. Coxford (Eds.), Connecting mathematics across the curriculum (pp. 233-245). NCTM.

Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390-419). Macmillan Publishing.

Musser, G.L., Burger, F.W., & Peterson, B.E. (2008). Mathematics for elementary teachers: A contemporary approach. Wiley.

Mhlolo, M.K. (2013 ). Mathematical connections of a higher cognitive level: A tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176-191. https://doi.org/10.1080/10288457.2012.10740738

Rodríguez-Nieto, C.A., Cervantes-Barraza, J.A., & Font, V.F. (2023). Exploring mathematical connections in the context of proof and mathematical argumentation: A new proposal of networking of theories. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), em2264. https://doi.org/10.29333/ejmste/13157

Rodríguez-Nieto, C.A., Font, V.F., Borji, V., & Rodríguez-Vásquez, F.M. (2022) Mathematical connections from a networking of theories between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 53(9), 2364-2390. https://doi.org/10.1080/0020739X.2021.1875071

Rodríguez-Nieto, C.A., Rodríguez-Vásquez, F.M., & Font, V.F. (2022). A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256. https://doi.org/10.1080/0020739X.2020.1799254

Stacey, K., & MacGregor, M. (1999). Learning the algebraic method of solving problems. Journal of Mathematical Behavior, 18(2), 149-167. https://doi.org/10.1016/S0732-3123(99)00026-7

Stillman, G. (1998). The emperor’s new clothes? Teaching and assessment of mathematical applications at the senior level. In P. Galbraith, W. Blum, G. Booker, & D. Huntley (Eds.), Mathematical modelling: Teaching and assessment in a technology-rich world (pp. 243-253). Horwood.

Tripathi, N.P. (2008). Developing mathematical understanding through multiple representations. Mathematics Teaching in the Middle School, 13(8), 438-445. https://doi.org/10.5951/MTMS.13.8.0438

Descargas

Publicado

2024-04-30

Cómo citar

Hatisaru, V., Stacey, K., & Star, J. (2024). Conexiones matemáticas en las estrategias de solución de problemas de álgebra de profesores de matemáticas de secundaria en formación. Avances De Investigación En Educación Matemática, (25), 33–55. https://doi.org/10.35763/aiem25.6354

Artículos más leídos del mismo autor/a