Conexiones matemáticas asociadas a la ecuación lineal que establecen estudiantes de bachillerato
DOI:
https://doi.org/10.35763/aiem25.4616Palabras clave:
Conexiones matemáticas, Ecuaciones lineales, Análisis temático, Álgebra, Experiencia de aprendizajeResumen
El presente estudio tuvo por objetivo identificar las conexiones matemáticas que establecieron cuatro estudiantes mexicanos de primer semestre de bachillerato cuando resolvieron tareas que involucraban a la ecuación lineal. Esta investigación es cualitativa, específicamente, es un estudio de casos que emplea como marco conceptual a las conexiones matemáticas. Para recolectar los datos se aplicaron cinco tareas mediadas por el software GeoGebra y se videograbaron los momentos en los que se socializaron algunas de las respuestas de los estudiantes. Estos datos se analizaron empleando el análisis temático. Los resultados mostraron que los estudiantes establecieron la conexión extra-matemática de modelado y las conexiones intra-matemáticas de tipo característica, significado, representaciones diferentes y procedimental, siendo las dos últimas las más frecuentes. Finalmente, se afirma que el uso del modelo de equilibrio, en tareas mediadas por GeoGebra y que promueven conexiones matemáticas, contribuye a que los estudiantes analicen la relación de igualdad al trabajar con ecuaciones lineales.
Descargas
Citas
Aguilar, S., & Barroso, O. (2015). La triangulación de datos como estrategia en investigación educativa. Pixel-bit. Revista de medios y educación, 47, 73-88. https://doi.org/10.12795/pixelbit.2015.i47.05
Andonegui, M. (2007). Introducción al álgebra. Serie desarrollo del pensamiento matemático, 2007/19. UNESCO. http://scioteca.caf.com/handle/123456789/529
Atteh, E., Andam, E., & Amoako, J. (2017). The Impact of using balance model in teaching linear equation. International Journal Article, 11(3), 1-12. https://doi.org/10.9734/ACRI/2017/35310
Braun, V., & Clarke, V. (2012). Thematic analysis. En H. Cooper (Ed.), Handbook of Research Methods in Psychology (pp. 57-71). American Psychological Association. https://doi.org/10.1037/13620-004
Businskas, A. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections. Tesis de doctorado no publicada. Simon Fraser University.
Campo-Meneses, K. G., & García-García, J. (2020). Explorando las conexiones matemáticas asociadas a la función exponencial y logarítmica en estudiantes universitarios colombianos. Educación Matemática, 32(3), 209-240. https://doi.org/10.24844/em3203.08
Campo-Meneses, K. G., & García-García, J. (2021). La comprensión de las funciones exponencial y logarítmica: una mirada desde las conexiones matemáticas y el Enfoque Ontosemiótico. PNA, 16(1), 25-56. https://doi.org/10.30827/pna.v16i1.15817
Campo-Meneses, K. G., & García-García, J. (2023). Conexiones matemáticas identificadas en la clase sobre funciones exponencial y logarítmica. Bolema: Boletim de Educação Matemática, 37(76), 849-871.
https://doi.org/10.1590/1980-4415v37n76a22
Chavarría, G. (2014). Dificultades en el aprendizaje de problemas que se modelan con ecuaciones lineales: El caso de estudiantes de octavo nivel de un colegio de Heredia. Uniciencia, 28(2), 15-44.
Dolores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de cálculo en contexto: un estudio de casos en nivel superior. Bolema: Boletim de Educação Matemática, 31(57), 158-180. http:// doi.org/10.1590/1980-4415v31n57a08
Eli, J., Mohr-Schroeder, M. J., & Lee, C. W. (2013). Mathematical connection and their relationship to mathematics knowledge for teaching geometry. School Science and Mathematics, 113(3), 120-134. https://doi.org/10.1111/ssm.12009
Esquinas, A. (2009). Dificultades de aprendizaje del lenguaje algebraico: del símbolo a la formalización algebraica: aplicación a la práctica docente. Tesis doctoral no publicada. Universidad Complutense de Madrid.
Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula. Tesis de doctorado no publicada. Pennsylvania State University College of Education.
Garbín, S. (2005). ¿Cómo piensan los alumnos entre 16 y 20 años el infinito? La influencia de los modelos, las representaciones y los lenguajes matemáticos. Revista Latinoamericana de Investigación en Matemática Educativa, 8(2), 169-193. https://www.redalyc.org/pdf/335/33580205.pdf
García-García, J. (2019). Escenarios de exploración de conexiones matemáticas. NÚMEROS, 100, 129-133.
García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.1355994
García-García, J., & Dolores-Flores, C. (2021). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33(1), 1-22. https://doi.org/10.1007/s13394-019-00286-x
Jaijan, W., & Loipha, S. (2012). Making mathematical connections with transformations using open approach. HRD Journal, 3(1), 91-100.
https://so01.tci-thaijo.org/index.php/HRDJ/article/view/11305
Kaplan, R., & Alon, S. (2013). Using technology to teach equivalence. Teaching Children Mathematics, 19(6), 382-389. https://doi.org/10.5951/teacchilmath.19.6.0382
Lehmann, C. (2004). Álgebra. Limusa.
Mengistie, S. (2020). Enhancing Students’ Understanding of Linear Equation with One Variable Through Teaching. International Journal of Trends in Mathematics Education Research, 3(2), 69-80. https://doi.org/10.33122/ijtmer.v3i2.148
Muñoz, M., & Ríos, C. (octubre de 2008). Nociones básicas sobre álgebra: Análisis de las dificultades presentadas por los estudiantes en los procesos de aprendizaje de los conceptos básicos sobre álgebra. IX Encuentro Colombiano de Matemática Educativa, Valledupar, Colombia.
Navia, L. (2017). Representaciones semióticas del concepto de ecuación lineal con una variable a partir de la implementación de un juego didáctico. Revista Amazonia Investiga, 6(11), 38-52.
NCTM. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.
Otten, M., Van den Heuvel-Panhuizen, M., & Veldhuis, M. (2019). The balance model for teaching linear equations: a systematic literature review. International Journal of STEM Education, 6(30), 1-21. https://doi.org/10.1186/s40594-019-0183-2
Rodríguez-Nieto, C., Rodríguez-Vásquez, F., & Font, V. (2022). A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256, https://doi.org/10.1080/0020739X.2020.1799254
Rodríguez-Nieto, C., Rodríguez-Vásquez, F., Font, V., & Morales-Carballo, A. (2021). Una visión desde la red de teorías TAC-EOS sobre el papel de las conexiones matemáticas en la comprensión de la derivada. Revemop, 3, 1-32. https://doi.org/10.33532/revemop.e202115
Segura, S. (2004). Sistemas de ecuaciones lineales: una secuencia didáctica. RELIME: Revista Latinoamericana de Investigación en Matemática Educativa, 7(1), 49-78.
Soto, E. (2021). Glosario ilustrado de matemáticas escolares. Aprende Matemáticas.
Suh, J. & Moyer, P. (2007). Developing students’ representational fluency using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26(2), 155-173.
Vlassis, J. (2002). Hindrance or support for the solving of linear equations with one unknown. Educational Studies in Mathematics, 49(3), 341-359. https://www.jstor.org/stable/3483036
Warren, E., & Cooper, T. (2005). Young Children’s Ability to Use the Balance Strategy to Solve for Unknowns. Mathematics Education Research Journal, 17(1), 58-72.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Gabriel Barragán Mosso, Karen Gisel Campo-Meneses, Javier García-García
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los trabajos se publican bajo una licencia de Creative Commons: Reconocimiento 4.0 España a partir del número 21 (2022).
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y el reconocimiento de la autoría.
- Los textos publicados en esta revista están sujetos –si no se indica lo contrario– a una licencia de Reconocimiento 4.0 Internacional de Creative Commons. Puede copiarlos, distribuirlos, comunicarlos públicamente, hacer obras derivadas y usos comerciales siempre que reconozca los créditos de las obras (autoría, nombre de la revista, institución editora) de la manera especificada por los autores o por la revista. La licencia completa se puede consultar en http://creativecommons.org/licenses/by/4.0.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).