Diseño e implementación de tareas de alta demanda cognitiva basadas en la sucesión look and say

Autores/as

DOI:

https://doi.org/10.35763/aiem20.3998

Palabras clave:

Sucesiones, look and say, diseño de tareas, alta demanda cognitiva, tipos de razonamiento

Resumen

Pese a que su tratamiento escolar usual se centra en aspectos principalmente de cálculo, las sucesiones son un tópico matemático con el potencial para desarrollar en los alumnos aspectos del razonamiento matemático. En este trabajo se diseña una secuencia de tareas de alta demanda cognitiva basadas en la sucesión ‘look and say’ y se implementa en un grupo de secundaria con especial interés por las matemáticas durante una sesión del Taller de Talento Matemático en la Universidad de Zaragoza. La metodología es exploratoria y descriptiva con análisis mixto de datos cualitativos. Los alumnos participantes resolvieron las tareas con un alto grado de éxito y surgieron bastantes respuestas de gran riqueza conceptual. Estas tareas pueden ser útiles para trabajar aspectos transversales del currículo e identificar alumnos con altas capacidades matemáticas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguayo, P. (2011). La teoría de la abducción de Peirce: Lógica, metodología e instinto. Ideas y valores, 60(145), 33-53.

Alcock, L. y Simpson, A. (2004). Convergence of sequences and series: Interactions between visual reasoning and the learner’s beliefs about their own role. Educational Studies in Mathematics, 57, 1-32. https://doi.org/10.1023/B:EDUC.0000047051.07646.92

Arce, M. y Conejo, L. (2019). Razonamientos y esquemas de prueba evidenciados por estudiantes para maestro: Relaciones con el conocimiento matemático. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 163-172). SEIEM.

Arnal-Palacián, M. (2019). Límite infinito de una sucesión: fenómenos que organiza. Trabajo de Tesis Doctoral. Universidad Complutense de Madrid.

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M. y Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education. Springer. https://doi.org/10.1007/978-1-4614-7966-6

Asiala, M. B., DeVries, A., Dubinsky, D., Mathews, E. y Thomas, D. K. (1996). A framework for research and curriculum development in undergraduate mathematics education. En J. Kaput, A. H. Schoenfeld y E. Dubinsky (Eds.), Research in Collegiate Mathematics Education II (pp. 1-32). AMS. https://doi.org/10.1090/cbmath/006/01

Bajo Benito, J. M., Gavilán-Izquierdo, J. M. y Sánchez-Matamoros, G. (2019). Caracterización del esquema de sucesión numérica en estudiantes de Educación Secundaria Obligatoria. Enseñanza de las Ciencias, 37(3), 149-167.

Bajo Benito, J. M., Sánchez-Matamoros, G. y Gavilán Izquierdo, J. M. (2015). Las progresiones como indicador de la comprensión del concepto de sucesión numérica en alumnos de segundo ciclo de enseñanza secundaria obligatoria. En C. Fernández, M. Molina y N. Planas (Eds.), Investigación en Educación Matemática XIX (pp. 143-151). SEIEM.

Barton, J., Feil, D., Lartigue, D. y Mullins, B. (2004). Sequences for Student Investigation. PRIMUS, 14(4), 354-368. https://doi.org/10.1080/10511970408984099

Biza, I., Hewitt, D., Watson, A. y Mason, J. (2020). Generalization strategies in finding the nth term rule for simple quadratic sequences. International Journal of Science and Mathematics Education, 18, 1105-1126. https://doi.org/10.1007/s10763-019-10009-0

Bronstein, V. y Fraenkel, A. S. (1994). On a curious property of counting sequences. American Mathematical Monthly, 101(6), 560-563. https://doi.org/10.1080/00029890.1994.11996991

Chace, A. B. (1986). The Rhind Mathematical Papyrus. NCTM.

Conway, J. H. (1986). The weird and wonderful chemistry of audioactive decay. Eureka, 46, 5-18.

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson.

De la Cueva, F. (2016). Taller de Talento Matemático. Entorno Abierto, 12, 5-7.

Delgado, M. L., Codes, M., Monterrubio, M. C. y González-Astudillo, M. T. (2014). El concepto de serie numérica. Un estudio a través del modelo de Pirie y Kieren centrado en el mecanismo “folding back”. Avances de Investigación en Educación Matemática, 6, 25-44.

Dubinsky, E. y McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. En D. Holton (Ed.), The teaching and learning of mathematics at university level (pp. 275-282). Springer. https://doi.org/10.1007/0-306-47231-7_25

Fernández-Plaza, J. A. y Simpson, A. (2016). Three concepts or one? Students’ understanding of basic limit concepts. Educational Studies in Mathematics, 93, 315-332. https://doi.org/10.1007/s10649-016-9707-6

Gairín, J. M., Manero, V., Muñoz-Escolano, J. M., y Oller-Marcén, A. M. (2018). La sucesión look and say. VIII Congreso Iberoamericano de Educación Matemática. Libro de Actas, CB-603 (pp. 16-24). FESPM.

Jaime, A. y Gutiérrez, Á. (2017). Investigación sobre estudiantes con alta capacidad. En J. M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. Callejo y J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp.71-89). SEIEM.

Jojo, Z. M. M. (2014). Instructional design in the formation of mental images and the genetic decomposition of a concept. Journal of Educational and Social Research, 4(3), 139-148.

Manrique, V. H. y Soler-Álvarez, M. N. (2014) El proceso de descubrimiento en la clase de matemáticas: Los razonamientos abductivo, inductivo y deductivo. Enseñanza de las Ciencias, 32(2), 191-219. https://doi.org/10.5565/rev/ensciencias.1026

Peirce, C. S. (1934). The collected papers of Charles Sanders Peirce, Vol. V: Pragmatism and pragmaticism. C. Hartshorne & P. Weiss (Eds.). Harvard University Press.

Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23-41. https://doi.org/10.1007/s10649-006-9057-x

Pedemonte, B. y Reid, D. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76, 281-303.

https://doi.org/10.1007/s10649-010-9275-0

Postic, M. y de Ketele, J. M. (1988). Observer les situations éducatives. Presses Universitaires de France.

Przenioslo, M. (2006). Conceptions of a sequence formed in secondary schools. International Journal of Mathematical Education in Science and Technology, 37(7), 805-823. https://doi.org/10.1080/00207390600733832

Saurberg, J. y Shu, L. (1997). The long and the short on counting sequences. The American Mathematical Monthly, 104(4), 306-317. https://doi.org/10.1080/00029890.1997.11990642

Sigler, L. E. (2002). Fibonacci’s Liber Abaci. A translation into modern English of Leonardo Pisano’s Book of Calculation. Springer.

https://doi.org/10.1007/978-1-4613-0079-3

Smith, M. S. y Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350. https://doi.org/10.5951/MTMS.3.5.0344

Toulmin, S. E. (2003). The uses of argument. Updated edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511840005

Trigueros, M. y Oktaç, A. (2019). Task design in APOS theory. Avances de Investigación en Educación Matemática, 15, 43-55. https://doi.org/10.35763/aiem.v0i15.256

Weigand, H. G. (2004). Sequences - basic elements for discrete mathematics. ZDM, 36(3), 91-97. https://doi.org/10.1007/BF02652776

Yeo, J. (2007). Mathematical tasks: Clarification, classification and choice of suitable tasks for different types of learning and assessment. Technical Report ME2007-01. NIE Singapore.

Yin, R. K. (2018). Case Study research and applications. Sage.

Descargas

Publicado

2021-10-25

Cómo citar

Manero, V., Muñoz-Escolano, J. M., & Oller-Marcén, A. M. (2021). Diseño e implementación de tareas de alta demanda cognitiva basadas en la sucesión look and say. Avances De Investigación En Educación Matemática, (20), 161–183. https://doi.org/10.35763/aiem20.3998

Número

Sección

Artículos