Design and implementation of cognitive high-demand tasks based on the look and say sequence
DOI:
https://doi.org/10.35763/aiem20.3998Keywords:
Sequences, look and say, task design, cognitive high-demand, types of reasoningAbstract
Even though their school treatment is mainly based on calculations, numerical sequences are a mathematical topic with the potential to develop aspects of mathematical reasoning amongst students. In this work, we design a sequence of tasks of cognitive high-demand based on the ‘look and say’ sequence and implement them with a group of secondary school students particularly interested in mathematics during a session of the Workshop of Mathematical Talent at the University of Zaragoza. The methodology is exploratory and descriptive with mixed analysis of qualitative data. Participants solved the tasks with a high rate of success and several answers were of high conceptual richness. These tasks might be useful to work transversal curricular aspects and to identify those mathematically gifted.
Downloads
References
Aguayo, P. (2011). La teoría de la abducción de Peirce: Lógica, metodología e instinto. Ideas y valores, 60(145), 33-53.
Alcock, L. y Simpson, A. (2004). Convergence of sequences and series: Interactions between visual reasoning and the learner’s beliefs about their own role. Educational Studies in Mathematics, 57, 1-32. https://doi.org/10.1023/B:EDUC.0000047051.07646.92
Arce, M. y Conejo, L. (2019). Razonamientos y esquemas de prueba evidenciados por estudiantes para maestro: Relaciones con el conocimiento matemático. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 163-172). SEIEM.
Arnal-Palacián, M. (2019). Límite infinito de una sucesión: fenómenos que organiza. Trabajo de Tesis Doctoral. Universidad Complutense de Madrid.
Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M. y Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education. Springer. https://doi.org/10.1007/978-1-4614-7966-6
Asiala, M. B., DeVries, A., Dubinsky, D., Mathews, E. y Thomas, D. K. (1996). A framework for research and curriculum development in undergraduate mathematics education. En J. Kaput, A. H. Schoenfeld y E. Dubinsky (Eds.), Research in Collegiate Mathematics Education II (pp. 1-32). AMS. https://doi.org/10.1090/cbmath/006/01
Bajo Benito, J. M., Gavilán-Izquierdo, J. M. y Sánchez-Matamoros, G. (2019). Caracterización del esquema de sucesión numérica en estudiantes de Educación Secundaria Obligatoria. Enseñanza de las Ciencias, 37(3), 149-167.
Bajo Benito, J. M., Sánchez-Matamoros, G. y Gavilán Izquierdo, J. M. (2015). Las progresiones como indicador de la comprensión del concepto de sucesión numérica en alumnos de segundo ciclo de enseñanza secundaria obligatoria. En C. Fernández, M. Molina y N. Planas (Eds.), Investigación en Educación Matemática XIX (pp. 143-151). SEIEM.
Barton, J., Feil, D., Lartigue, D. y Mullins, B. (2004). Sequences for Student Investigation. PRIMUS, 14(4), 354-368. https://doi.org/10.1080/10511970408984099
Biza, I., Hewitt, D., Watson, A. y Mason, J. (2020). Generalization strategies in finding the nth term rule for simple quadratic sequences. International Journal of Science and Mathematics Education, 18, 1105-1126. https://doi.org/10.1007/s10763-019-10009-0
Bronstein, V. y Fraenkel, A. S. (1994). On a curious property of counting sequences. American Mathematical Monthly, 101(6), 560-563. https://doi.org/10.1080/00029890.1994.11996991
Chace, A. B. (1986). The Rhind Mathematical Papyrus. NCTM.
Conway, J. H. (1986). The weird and wonderful chemistry of audioactive decay. Eureka, 46, 5-18.
Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson.
De la Cueva, F. (2016). Taller de Talento Matemático. Entorno Abierto, 12, 5-7.
Delgado, M. L., Codes, M., Monterrubio, M. C. y González-Astudillo, M. T. (2014). El concepto de serie numérica. Un estudio a través del modelo de Pirie y Kieren centrado en el mecanismo “folding back”. Avances de Investigación en Educación Matemática, 6, 25-44.
Dubinsky, E. y McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. En D. Holton (Ed.), The teaching and learning of mathematics at university level (pp. 275-282). Springer. https://doi.org/10.1007/0-306-47231-7_25
Fernández-Plaza, J. A. y Simpson, A. (2016). Three concepts or one? Students’ understanding of basic limit concepts. Educational Studies in Mathematics, 93, 315-332. https://doi.org/10.1007/s10649-016-9707-6
Gairín, J. M., Manero, V., Muñoz-Escolano, J. M., y Oller-Marcén, A. M. (2018). La sucesión look and say. VIII Congreso Iberoamericano de Educación Matemática. Libro de Actas, CB-603 (pp. 16-24). FESPM.
Jaime, A. y Gutiérrez, Á. (2017). Investigación sobre estudiantes con alta capacidad. En J. M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. Callejo y J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp.71-89). SEIEM.
Jojo, Z. M. M. (2014). Instructional design in the formation of mental images and the genetic decomposition of a concept. Journal of Educational and Social Research, 4(3), 139-148.
Manrique, V. H. y Soler-Álvarez, M. N. (2014) El proceso de descubrimiento en la clase de matemáticas: Los razonamientos abductivo, inductivo y deductivo. Enseñanza de las Ciencias, 32(2), 191-219. https://doi.org/10.5565/rev/ensciencias.1026
Peirce, C. S. (1934). The collected papers of Charles Sanders Peirce, Vol. V: Pragmatism and pragmaticism. C. Hartshorne & P. Weiss (Eds.). Harvard University Press.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23-41. https://doi.org/10.1007/s10649-006-9057-x
Pedemonte, B. y Reid, D. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76, 281-303.
https://doi.org/10.1007/s10649-010-9275-0
Postic, M. y de Ketele, J. M. (1988). Observer les situations éducatives. Presses Universitaires de France.
Przenioslo, M. (2006). Conceptions of a sequence formed in secondary schools. International Journal of Mathematical Education in Science and Technology, 37(7), 805-823. https://doi.org/10.1080/00207390600733832
Saurberg, J. y Shu, L. (1997). The long and the short on counting sequences. The American Mathematical Monthly, 104(4), 306-317. https://doi.org/10.1080/00029890.1997.11990642
Sigler, L. E. (2002). Fibonacci’s Liber Abaci. A translation into modern English of Leonardo Pisano’s Book of Calculation. Springer.
https://doi.org/10.1007/978-1-4613-0079-3
Smith, M. S. y Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350. https://doi.org/10.5951/MTMS.3.5.0344
Toulmin, S. E. (2003). The uses of argument. Updated edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511840005
Trigueros, M. y Oktaç, A. (2019). Task design in APOS theory. Avances de Investigación en Educación Matemática, 15, 43-55. https://doi.org/10.35763/aiem.v0i15.256
Weigand, H. G. (2004). Sequences - basic elements for discrete mathematics. ZDM, 36(3), 91-97. https://doi.org/10.1007/BF02652776
Yeo, J. (2007). Mathematical tasks: Clarification, classification and choice of suitable tasks for different types of learning and assessment. Technical Report ME2007-01. NIE Singapore.
Yin, R. K. (2018). Case Study research and applications. Sage.
Downloads
Published
How to Cite
Issue
Section
License
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).