The Role of Intra-mathematical Connections in Learning Decimal Numbers

Authors

DOI:

https://doi.org/10.35763/aiem25.6399

Keywords:

Mathematical connections, Rational numbers, Decimal numbers, Number sense, Secondary education

Abstract

Several characterizations proposed for number sense coincide in the need to promote the establishment of connections for the strategic use of rational numbers by students. This study follows a case study design for the analysis of eight class sessions of a group of 12–13-year-old students who study decimal numbers. Results show a relationship between the emergence of specific types of mathematical connections and the possible development of specific components of number sense in students. A special relevance of “justification” type connections is pointed out in the construction of fundamental aspects of number sense. Opportunities to refine reference models of mathematical connections are also discussed.

Downloads

Download data is not yet available.
Supporting Agencies
PID2019-104964GB-I00, SGR 00159-AGAUR, ANID

References

Bryman, A. (2009). Social Research Methods. Oxford.

Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections. Dissertation [Doctoral dissertation]. Simon Fraser University.

Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64(3), 293–316. https://doi.org/10.1007/s10649-006-9036-2

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. Routledge. https://doi.org/10.4324/9780203029053

De Gamboa, G., Badillo, E., & Font, V. (2023). Meaning and Structure of Mathematical Connections in the Classroom. Canadian Journal of Science, Mathematics and Technology Education, 23(2), 241-261. https://doi.org/10.1007/s42330-023-00281-2

De Gamboa, G., Badillo, E., Ribeiro, M., Montes, M., & Sánchez-Matamoros, G. (2020). The role of teachers’ knowledge in the use of learning opportunities triggered by mathematical connections. En S. Zehetmeier, D. Potari, & M. Ribeiro (Eds.), Professional development and knowledge of mathematics teachers (pp. 24-43). Routledge. https://doi.org/10.4324/9781003008460-3

De Gamboa, G., & Figueiras, L. (2014). Conexiones en el conocimiento matemático del profesor: propuesta de un modelo de análisis. En M. González, M. Codes, D. Arnau, & T. Ortega (Eds.), Investigación en Educación Matemática XVIII. (pp. 337-344). SEIEM.

Dolores-Flores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de Cálculo en contexto: un estudio de casos en el nivel superior. Bolema, 31(57), 158-180. https://doi.org/10.1590/1980-4415v31n57a08

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103-131. https://doi.org/10.1007/s10649-006-0400-z

Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical connections of prospective middlegrades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297-319. https://doi.org/10.1007/s13394-011-0017-0

Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82, 97-124. https://doi.org/10.1007/s10649-012-9411-0

Gay, A. S., & Aichele, D. B. (1997). Middle school students' understanding of number sense related to percent. School Science and Mathematics, 97(1), 27 36. https://doi.org/10.1111/j.1949-8594.1997.tb17337.x

González-Forte, J. M., Fernández, C., Van Hoof, J., & Van Dooren, W. (2022). Profiles in understanding the density of rational numbers among primary and secondary school students. AIEM - Avances de investigación en educación matemática, 22, 47-70. https://doi.org/10.35763/aiem22.4034

Ghazali, M., Mohamed, R., & Mustafa, Z. (2021). A Systematic Review on the Definition of Children's Number Sense in the Primary School Years. Eurasia Journal of Mathematics, Science and Technology Education, 17(6), 1-12. https://doi.org/10.29333/ejmste/10871

Hatisaru, V. (2023) Mathematical connections established in the teaching of functions. Teaching Mathematics and its Applications: An International Journal of the IMA, 42(3) 207-227. https://doi.org/10.1093/teamat/hrac013

Hiebert, J., & Wearne, D. (1986). Procedures over concepts: the acquisition of decimal number knowledge. En J. Hiebert (Ed.), Conceptual and procedural knowledge: the case for mathematics (pp. 199-223). Laurence Erlbaum.

Isotani, S., Adams, D., Mayer, R.E., Durkin, K., Rittle-Johnson, B., & McLaren, B.M. (2011). Can erroneous examples help middle-school students learn decimals? Sixth European Conference on Technology Enhanced Learning: Towards Ubiquitous Learning (pp. 1-14). EC-TEL. https://doi.org/10.1007/978-3-642-23985-4_15

Lachance, A., & Confrey, J. (2001). Helping students build a path of understanding from ratio and proportion to decimal notation. The Journal of Mathematical Behavior, 20(4), 503-526. https://doi.org/10.1016/S0732-3123(02)00087-1

McIntosh, A., Reys, B. J., & Reys, R. E. (1992). A proposed framework for examining basic number sense. For the learning of mathematics, 12(3), 2-44.

Nickerson, S. D., & Whitacre, I. (2010). A local instruction theory for the development of number sense. Mathematical Thinking and Learning, 12(3), 227-252. https://doi.org/10.1080/10986061003689618

Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual Bases of Arithmetic Errors: The Case of Decimal Fractions. Journal for Research in Mathematics Education, 20(1), 8-27. https://doi.org/10.2307/749095

Rathouz, M. (2011). Visualizing Decimal Multiplication with Area Models: Opportunities and Challenges. Issues in the Undergraduate Mathematics Preparation of School Teachers, 2, 1-12.

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & Font, V. (2023). Combined use of the extended theory of connections and the onto-semiotic approach to analyze mathematical connections by relating the graphs of f and f’. Educational Studies in Mathematics, 114, 63-88. https://doi.org/10.1007/s10649-023-10246-9

Schneider, S. B., & Thompson, C. S. (2000). Incredible equations develop incredible number sense. Teaching Children Mathematics, 7(3), 146-148. https://doi.org/10.5951/TCM.7.3.0146

Şengül, S., & Gülbağcı, H. (2012). An investigation of 5th grade Turkish students' performance in number sense on the topic of decimal numbers. Procedia-Social and Behavioral Sciences, 46, 2289-2293. https://doi.org/10.1016/j.sbspro.2012.05.472

Sowder, J. (1992). Estimation and number sense. In D. A. Grouw (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 245-275). MacMillan Publishing Company.

Tian, J., & Siegler, R. S. (2018). Which type of rational numbers should students learn first? Educational Psychology Review, 30, 351-372. https://doi.org/10.1007/s10648-017-9417-3

VanHoof, J., Verschaffel, L., & VanDooren, W. (2015). Inappropriately applying natural number properties in rational number tasks: characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1),39-56. https://doi.org/10.1007/s10649-015-9613-3

Verschaffel, L., Greer, B., & De Corte., E. (2007). Whole number concepts and operations. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557-628). Information Age.

Yang, D. C., Hsu, C. J., & Huang, M. C. (2004) A Study of Teaching and Learning Number Sense for Sixth Grade Students in Taiwan. International Journal of Science and Mathematics Education, (2), 407-430 https://doi.org/10.1007/s10763-004-6486-9

Yin, R. (2014). Case Study Research. Sage.

Published

2024-04-30

How to Cite

De Gamboa, G., Caviedes, S. ., & Badillo Jiménez, E. (2024). The Role of Intra-mathematical Connections in Learning Decimal Numbers. Advances of Research in Mathematics Education, (25), 131–149. https://doi.org/10.35763/aiem25.6399