The development of students’ mathematical reasoning in Calculus courses
DOI:
https://doi.org/10.35763/aiem24.4326Keywords:
Mathematics Education, Teaching Differential and Integral Calculus, Mathematical Reasoning, Exploratory tasksAbstract
The aim is to understand how the students’ involvement in solving and discussing exploratory tasks, combined with the teacher’s actions, can contribute to the development of their mathematical reasoning (MR) in a Differential and Integral Calculus course. The study was qualitative, with an interpretive approach, and the participants were undergraduate engineering students. The data consists of (a) protocols containing written records of students’ discussions; (b) audio recordings of these discussions; and (c) video of the plenary discussion facilitated by the teacher. We discuss the MR processes that students mobilize, in particular conjecturing, generalizing, and justifying. We point out which of the teacher’s actions can contribute to the development of MR, in a continuous and growing movement, essentially related to the deepening of discussions based on elements presented by the students themselves, and the opportunities that are created in this process.
Downloads
References
Araman, E. M. O., Serrazina, M. L., & Ponte J. P. (2019). “Eu perguntei se o cinco não tem metade”: ações de uma professora dos primeiros anos que apoiam o raci-ocínio matemático. Educação Matemática Pesquisa, 21(2), 466-490. https://doi.org/10.23925/1983-3156.2018v21i2p466-490
Bogdan, R., & Biklen, S. (1994). Investigação qualitativa em Educação. Porto: Porto Editora.
Brasil. (2019). Ministério da Educação. Resolução no 2, de 24 de abril de 2019. Insti-tui as Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia, Brasília, Brasil. Edição 89. Seção 1, p. 43.
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experi-ments in educational research. Educational Researcher, 32(1), 9-13. https://doi.org/10.3102/0013189X032001009
Connally, E., Hughes-Hallett, D., & Gleason, A. M. (2009). Funções para modelar va-riações: uma preparação para o cálculo (3. ed.). LTC.
Crotty, M. (1998). The foundations of social research: meaning and perspective in the research Process. Sage.
Ellis, A., Özgür, Z., & Reiten, L. (2019). Teacher moves for supporting student rea-soning. Mathematics Education Research Journal, 30(2), 1-26. https://doi.org/10.1007/s13394-018-0246-6
Erickson, F. (1986). Qualitative Methods in Research on Teaching. In: M. Wittrock (Ed.), Handbook of Research on Teaching (3rd ed., pp. 119-161). MacMillan.
Galbraith, P. (1995). Connecting Research to Teaching: Mathematics as reasoning. The Mathematics Teacher, 88(5), 412- 417. https://doi.org/10.5951/MT.88.5.0412
Ghedamsi, I., & Lecorre, T. (2021). Transition from high school to university calcu-lus: a study of connection. ZDM, 53, 563–575.
https://doi.org/10.1007/s11858-021-01262-1
Hieb, J., Lyle, K., Ralston, P., & Chariker, J. (2015). Predicting Performance in a First Engineering Calculus Course: Implications for Interventions. International Journal of Mathematical Education in Science, 46(1), 40-55. https://doi.org/10.1080/0020739X.2014.936976
Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1-16. https://doi.org/10.1007/s10649-017-9761-8
Lannin, J., Ellis, A. B., & Elliot, R. (2011). Developing essential understanding of math-ematics reasoning for teaching mathematics in prekindergarten grade 8. National Council of Teachers of Mathematics.
Lithner. J. (2008). A research framework for creative and imitative reasoning. Edu-cational Studies in Mathematics, 67(3), 255-276.
https://doi.org/10.1007/s10649-007-9104-2
Mata-Pereira, J., & Ponte, J. P. (2018). Promover o Raciocínio Matemático dos Alu-nos: uma investigação baseada em design. Bolema, 32(62), 781-801. https://doi.org/10.1590/1980-4415v32n62a02
Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In Proceedings of the 3rd Mediterranean Conference on Mathematical Education (pp. 115-124). The Hellenic mathematical society.
Ponte, J. P. (2005). Gestão curricular em Matemática. In: GTI (Ed.), O teacher e o de-senvolvimento curricular (pp. 11-34). APM.
Ponte, J. P., Mata-Pereira, J., & Henriques, A. (2012). O raciocínio matemático nos alunos do ensino básico e do ensino superior. Práxis Educativa, 7(2), 355-377. http://doi.org/10.512/PraxEdu.v7i2.0003
Ponte, J. P., Mata-Pereira, J., & Quaresma, M. (2013). Ações do professor na condu-ção de discussões matemáticas. Quadrante, 22(2), 55-81. https://doi.org/10.48489/quadrante.22894
Powell, A. B., Francisco, J. M. & Maher, C. A. (2004). Uma abordagem à análise de dados de vídeo para investigar o desenvolvimento de ideias e raciocínios ma-temáticos de estudantes. Bolema, 17(21), 81-140.
Rasmussen, C., Marrongele, K., & Borba, M. C. (2014). Research on calculus: what do we know and where do we need to go? ZDM, 46, 507-515. https://doi.org/10.1007/s11858-014-0615-x
Rodrigues, C., Menezes, L. & Ponte, J. P. (2018). Práticas de Discussão em Sala de Aula de Matemática: os casos de dois teacheres. Bolema, 12(61), 398-418. https://doi.org/10.1590/1980-4415v32n61a05
Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating Pro-ductive Mathematical Discussions: Five Practices for Helping Teachers Move Beyond Show and Tell. Mathematical Thinking and Learning, 10(4), 313-340. https://doi.org/10.1080/10986060802229675
Trevisan, A. L. & Mendes, M. T. (2018). Ambientes de ensino e aprendizagem de cál-culo diferencial e integral organizados a partir de episódios de resolução de tarefas: uma proposta. Revista Brasileira de Ensino de Ciência e Tecnologia, 11(1), 209-227. https://doi.org/10.3895/rbect.v11n1.5702
Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In: J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). National Council of Teachers of Mathematics.
Thompson, P. W., & Harel, G. (2021). Ideas foundational to calculus learning and their links to students’ difficulties. ZDM, 53, 507-519
Wood, T. (1998). Creating classroom interactions for mathematical reasoning: be-yond “natural teaching”. In: Abrantes, P., Porfírio, J. & Baía, M. (Orgs.), The interactions in the mathematics classroom – Proceedings of the CIEAEM 49 (pp. 34-43). Escola Superior de Educação.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 André Luis Trevisan, Eliane Maria de Oliveira Araman, Maria de Lurdes Serrazina3
This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).