Mathematical and didactic knowledge of preservice primary teachers about the area of 2d figures
DOI:
https://doi.org/10.35763/aiem24.4076Keywords:
Specialised knowledge, Subdomains of knowledge, Pre-service teachers, Area of flat figuresInterpreting student responsesAbstract
This study aims to characterize elements of the specialised knowledge of a group of pre-service teachers (PST). Emphasis is placed on the following subdomains: Knowledge of Topics, Knowledge of the Structure of Mathematics, Knowledge of the Features of Learning Mathematics and Knowledge of Mathematics Teaching. The procedures and written justifications that PST use in task-solving and in interpreting student responses to area tasks are analyzed. The results show that the use of procedures of a different nature is related to the mobilization of different indicators of Knowledge of Topics, while promoting the establishment of connections with other mathematical content. The indicators defined for the Knowledge of the Features of learning mathematics, and Knowledge of Mathematics teaching, are related to a greater capacity of the PST to interpret students’ responses.
Downloads
References
Badillo, E., & Fernández, C. (2018). Oportunidades que emergen de la relación entre perspectivas: análisis del conocimiento y/o competencia docente. En L. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. García & A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 66-80). SEIEM.
Ball, D. L., Thames, M., & Phelps, G. (2008). Content Knowledge for Teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
Bassey, M. (1990). On the nature of research in education. Research Intelligence.
Baturo, A., & Nason, R. (1996). Student teachers’ subject matter knowledge within the domain of area measurement. Educational studies in mathematics, 31(3), 235-268. https://doi.org/10.1007/BF00376322
Browning, C., Edson, A., Kimani, P., & Aslan-Tutak, F. (2014). Mathematical content knowledge for teaching elementary mathematics: A focus on geometry and measurement. The Mathematics Enthusiast, 11(2), 333-383. https://doi.org/10.54870/1551-3440.1306
Carrillo-Yañez, J., Climent, N., Contreras, L., & Muñoz-Catalán, M. (2013). Determining specialised knowledge for mathematics teaching. En B. Ubuz, C. Hasery & M. Mariotti (Eds.), Proceedings of the CERME 8 (pp. 2985-2994). ERME.
Carrillo-Yañez, J., Climent, N., Montes, M., Contreras, L., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Agular-González, A., Ribeiro, M., & Muñoz-Catalán, M. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. https://doi.org/10.1080/14794802.2018.1479981
Caviedes, S., De Gamboa, G., & Badillo, E. (2019). Conexiones matemáticas que establecen maestros en formación al resolver tareas de medida y comparación de áreas. Praxis, 15(1), 69-87. https://doi.org/10.21676/23897856.2984
Caviedes, S., De Gamboa, G., y Badillo, E. (2021a). Mathematical objects that configure the partial area meanings mobilized in task-solving. International Journal of Mathematical Education in Science and Technology, 54(6), 1092-1111. https://doi.org/10.1080/0020739X.2021.1991019
Caviedes, S., De Gamboa, G., & Badillo, E. (2021b). Aproximación al conocimiento especializado sobre área en estudiantes para maestro. En Diago, P. D., Yáñez D. F., González-Astudillo, M. T. & Carrillo, D. (Eds.), Investigación en Educación Matemática XXIV (pp. 213-220). SEIEM.
Fernández, C., & Choy, B. H. (2020). Theoretical lenses to develop mathematics teacher noticing. En S. Llinares & O. Chapman (Eds.), International Handbook of Mathematics Teacher Education (Vol. 2, pp. 337-360). Brill Sense.
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Reidel.
Hong, D., & Runnalls, C. (2020). Examining Preservice Teachers’ Responses to Area Conservation Tasks. School Science and Mathematics, 120(5), 198-208. https://doi.org/10.1111/ssm.12409
Jacobs., Lamb, L., & Philipp, R. (2010). Professional noticing of children’s mathematical thinking. Journal for research in mathematics education, 41(2), 169-202. https://doi.org/10.5951/jresematheduc.41.2.0169
Krippendorff, K. (2004) Content Analysis: An Introduction to its Methodology. Sage.
Liñan, M., Barrera, V., & Infante, J. (2014). Conocimiento especializado de los estudiantes para maestro: La resolución de un problema con división de fracciones. Escuela Abierta, 17(1), 41-63. https://doi.org/10.29257/EA17.2014.04
Livy, S., Muir, T., & Maher, N. (2012). How do they measure up? Primary pre-service teachers’ mathematical knowledge of area and perimeter. Mathematics Teacher Education and Development, 14(2), 91-112.
Llinares, S. (2012). Formación de profesores de matemáticas. Caracterización y desarrollo de competencias docentes. Cuadernos, 10, 53-62.
Mason, J. (2002). Researching your own practice. The discipline of noticing. Routledge Falmer.
Montes, M., Aguilar, A., Carrillo, J., & Muñoz-Catalán, M. (2013). MTSK: From Common and Horizon Knowledge to Knowledge of Topics and Structures. En B. Ubuz, C. Haser, & M. Mariotti (Eds.), Proceedings of the CERME 8 (pp. 3185-3194). ERME.
Policastro, M., Mellone, M., Ribeiro, M., & Fiorentini, D. (2019). Conceptualising tasks for teacher education: from a research methodology to teachers’ knowledge development. En U. Jankvist, M. van den Heuvel-Panhuizen & M. Veldhuis (Eds.), Proceedings of the CERME 11 (No. 24). ERME.
Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of mathematics teacher education, 8(3), 255-281. https://doi.org/10.1007/s10857-005-0853-5
Runnalls, C., & Hong. D. (2020). “Well, they understand the concept of area”: pre-service teachers’ responses to student area misconceptions. Mathematics Education Research Journal, 32(4), 629-651. https://doi.org/10.1007/s13394-019-00274-1
Sarama, J. & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. Routledge.
Scheiner, T., Montes, M., Godino, J. D., Carrillo-Yañez, J. & Pino-Fan, L. R. (2019). What makes mathematics teacher knowledge specialized? Offering alternative views. International Journal of Science and Mathematics Education, 17(1), 153-172. https://doi.org/10.1007/s10763-017-9859-6
Sherin, M. G., & van Es, E. (2009). Effects of Video Club Participation on Teachers’ Professional Vision. Journal of Teacher Education, 60(1), 20-37.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14. https://doi.org/10.3102/ 0013189X015002004
Simon, M. & Blume, G. (1994). Building and understanding multiplicative relationships: A study of prospective elementary teachers. Journal for Research in Mathematics Education, 25(5), 472-494. https://doi.org/10.5951/jresematheduc.25.5.0472
Tatto, M., Peck, R., Schwille, J., Bankov, K., Senk, S. L., Rodriguez, M., Ingvarson, L., Reckase, M. & Rowley, G. (2012). Policy, Practice, and Readiness to Teach Primary and Secondary Mathematics in 17 Countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-MM). International Association for the Evaluation of Educational Achievement.
Thomas, J., Jong, C., Fisher, M., & Schack, E. (2017). Noticing and Knowledge: Exploring Theoretical Connections between Professional Noticing and Mathematical Knowledge for Teaching. The Mathematics Educator, 26(2), 3-25.
Tierney, C., Boyd, C. & Davis, G. (1990). Prospective primary teachers’ conceptions of area. En G. Booker, P. P. Cobb & T. N. Mendicuti (Eds.), Proceedings of the IGPME 14 (Vol. 2, pp. 307-314). PME.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sofía Caviedes, Genaro De Gamboa, Edelmira Badillo
This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).