A Variational Approach for the Significance of Derivative Criteria in Motion-Modeling Situations

Authors

DOI:

https://doi.org/10.35763/aiem27.6157

Keywords:

Variational strategies, Modelling–graphing category, Derivative criteria, Undergraduate, Calculus

Abstract

In this paper, we present the results of research that aims to signify the criteria of the first and second derivatives through a variational analysis of a motion modeling situation that incorporates technological elements. To construct the evidence, a movement-modeling situation was applied to a group of undergraduate students. The results show that the discussion on the criteria is based on how the motion (position, velocity, and acceleration) of a mobile must reproduce a certain proposed position graph and to reach a dialogue on how to generate the different behaviors (constant, increasing, and decreasing) observed in it and, therefore, of the variational characteristics (represented in the monotony and concavity of the curve). The importance of the variational strategies of comparison and seriation on the significance of the criteria is evident.

Downloads

Download data is not yet available.

References

Antonio, R., Escudero, D., & Flores, E. (2019). Una introducción al concepto de deri-vada en estudiantes de bachillerato a través del análisis de situaciones de va-riación. Educación Matemática, 31(1), 258-280. https://doi.org/10.24844/EM3101.10

Artigue, M. (1995). La enseñanza de los principios del cálculo: Problemas epistemo-lógicos, cognitivos y didácticos. En P. Gómez (Ed.), Ingeniería didáctica en edu-cación matemática (un esquema para la investigación y la innovación en la ense-ñanza y el aprendizaje de las matemáticas) (pp. 97–140). Iberoamérica.

Berry, J., & Nyman, M. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481–497. https://doi.org/10.1016/j.jmathb.2003.09.006

Cabrera, L., & Martínez, J. A. (2022). Esquema para el desarrollo del pensamiento y lenguaje variacional en secundaria. Un estudio exploratorio. En B. Rodríguez (Coord.), Los estudios sobre la enseñanza del Español y las Matemáticas en educa-ción básica, hoy (pp. 167-195). Universidad Autónoma de San Luis Potosí, Uni-versidad Autónoma de Querétaro y Benemérita Escuela Normal Veracruzana.

Cantoral, R. (2019). Caminos del saber. Pensamiento y lenguaje variacional. Gedisa.

Cantoral, R., Moreno-Durazo, A., & Caballero-Pérez, M. (2018). Socio-epistemological research on mathematical modelling: An empirical approach to teaching and learning. ZDM Mathematics Education, 50, 77–89. https://doi.org/10.1007/s11858-018-0922-8

Fallas, R., & Lezama, J. (2022). Argumentos variacionales en la comprensión de la concavidad en gráficas de funciones. Perfiles Educativos, 178(44), 130-148. https://doi.org/10.22201/iisue.24486167e.2022.178.60619

Hitt, F., & Dufour, S. (2021). Introduction to calculus through an open-ended task in the context of speed: Representations and actions by students in action. ZDM – Mathematics Education, 53, 635–647. https://doi.org/10.1007/s11858-021-01258-x

Jiménez, A. (2019). Estrategias variacionales usadas por estudiantes de licenciatura en un ambiente tecnológico: El caso de los criterios de la derivada (Tesis de maestría sin publicar). Universidad Autónoma de Coahuila.

Jiménez, A., & Zaldívar, J. (2022). Resultados de un estudio preliminar para el estu-dio de los criterios de la derivada. Investigación e Innovación en Matemática Educativa, 7, 1-26. https://doi.org/10.46618/iime.122

Jones, S. (2017). An exploratory study on student understandings of derivatives in real-world, non-kinematics contexts. Journal of Mathematical Behavior, 45, 95–110. http://dx.doi.org/10.1016/j.jmathb.2016.11.002

Jones, S. (2018). Students’ application of concavity and inflection points to real-world problems. International Journal of Science and Mathematics Education, 17, 523-544. https://doi.org/10.1007/s10763-017-9876-5

Latorre, A. (2005). La investigación-acción. Conocer y cambiar la práctica educativa. Graó.

Mariotti, M., & Maffia, A. (2018). From using artefacts to mathematical meanings: The teacher’s role in the semiotic mediation process. Didattica della Matematica. Dalle Ricerche Alle Pratiche d’Aula, 3, 50–63. https://doi.org/10.33683/ddm.18.4.3.1

Marrongelle, K. A. (2004). How students use physics to reason about calculus tasks. School Science and Mathematics, 104(6), 258–272. https://doi.org/10.1111/j.1949-8594.2004.tb17997.x

Park, J. (2013). Is the derivative a function? If so, how do students talk about it? In-ternational Journal of Mathematical Education in Science and Technology, 44(5), 624-640. https://doi.org/10.1080/0020739X.2013.795248

Rasmussen, C., Borba, M., & Marrongelle, K. (2014). Research on calculus: What do we know and where do we need to go? ZDM Mathematics Education, 46, 507–515. https://doi.org/10.1007/s11858-014-0615-x

Salazar, C., Díaz, H., & Bautista, M. (2009). Descripción de niveles de comprensión del concepto derivada. Tecné, Episteme y Didaxis, 26, 62-82. https://doi.org/10.17227/ted.num26-421

Sealey, V., Infante, N., Campbell, M., & Bolyard, J. (2020). The generation and use of graphical examples in calculus classrooms: The case of the mean value theo-rem. The Journal of Mathematical Behavior, 57. https://doi.org/10.1016/j.jmathb.2019.100743

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Under-lying principles and essential elements. En R. Lesh & A. E. Kelly (Eds.), Re-search design in mathematics and science education (pp. 267-307). Erlbaum.

Suárez, L., & Cordero, F. (2010). Modelación graficación, una categoría para la ma-temática escolar. Resultados de un estudio socioepistemológico. Revista Lati-noamericana de Investigación en Matemática Educativa, 13(4), 319-333.

Swidan, O. (2019). Construction of the mathematical meaning of the function–derivative relationship using dynamic digital artifacts: A case study. Digital Experiences in Mathematics Education, 5, 203-222. https://doi.org/10.1007/s40751-019-00053-4

Thompson, P., & Carlson, M. (2017). Variation, covariation, and functions: Founda-tional ways of thinking mathematically. En J. Cai (Ed.), Compendium for re-search in mathematics education (pp. 421-456). National Council of Teachers of Mathematics.

Thompson, P., & Harel, G. (2021). Ideas foundational to calculus learning and their links to students’ difficulties. ZDM–Mathematics Education, 53, 507–519. https://doi.org/10.1007/s11858-021-01270-1

Urban-Woldron, H. (2014). Comprehension of calculus concept based on motion sensor data. R&E Source, 1. https://journal.ph-noe.ac.at/index.php/resource/article/view/158

Vrancken, S., & Engler, A. (2014). Una introducción a la derivada desde la variación y el cambio: Resultados de una investigación con estudiantes de primer año de la universidad. Bolema: Boletim de Educação Matemática, 28(48), 449-468. https://doi.org/10.1590/1980-4415v28n48a22

Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. CBMS Issues in Mathematics Education, 8, 103-122. https://doi.org/10.1090/cbmath/008/06

Published

2025-05-02

How to Cite

Zaldívar-Rojas, J. D., Cabrera Chim, L. M., & Jiménez Villalpando, A. V. (2025). A Variational Approach for the Significance of Derivative Criteria in Motion-Modeling Situations. Advances of Research in Mathematics Education, (27), 157–177. https://doi.org/10.35763/aiem27.6157

Issue

Section

Artículos