A Variational Approach for the Significance of Derivative Criteria in Motion-Modeling Situations
DOI:
https://doi.org/10.35763/aiem27.6157Keywords:
Variational strategies, Modelling–graphing category, Derivative criteria, Undergraduate, CalculusAbstract
In this paper, we present the results of research that aims to signify the criteria of the first and second derivatives through a variational analysis of a motion modeling situation that incorporates technological elements. To construct the evidence, a movement-modeling situation was applied to a group of undergraduate students. The results show that the discussion on the criteria is based on how the motion (position, velocity, and acceleration) of a mobile must reproduce a certain proposed position graph and to reach a dialogue on how to generate the different behaviors (constant, increasing, and decreasing) observed in it and, therefore, of the variational characteristics (represented in the monotony and concavity of the curve). The importance of the variational strategies of comparison and seriation on the significance of the criteria is evident.
Downloads
References
Antonio, R., Escudero, D., & Flores, E. (2019). Una introducción al concepto de deri-vada en estudiantes de bachillerato a través del análisis de situaciones de va-riación. Educación Matemática, 31(1), 258-280. https://doi.org/10.24844/EM3101.10
Artigue, M. (1995). La enseñanza de los principios del cálculo: Problemas epistemo-lógicos, cognitivos y didácticos. En P. Gómez (Ed.), Ingeniería didáctica en edu-cación matemática (un esquema para la investigación y la innovación en la ense-ñanza y el aprendizaje de las matemáticas) (pp. 97–140). Iberoamérica.
Berry, J., & Nyman, M. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481–497. https://doi.org/10.1016/j.jmathb.2003.09.006
Cabrera, L., & Martínez, J. A. (2022). Esquema para el desarrollo del pensamiento y lenguaje variacional en secundaria. Un estudio exploratorio. En B. Rodríguez (Coord.), Los estudios sobre la enseñanza del Español y las Matemáticas en educa-ción básica, hoy (pp. 167-195). Universidad Autónoma de San Luis Potosí, Uni-versidad Autónoma de Querétaro y Benemérita Escuela Normal Veracruzana.
Cantoral, R. (2019). Caminos del saber. Pensamiento y lenguaje variacional. Gedisa.
Cantoral, R., Moreno-Durazo, A., & Caballero-Pérez, M. (2018). Socio-epistemological research on mathematical modelling: An empirical approach to teaching and learning. ZDM Mathematics Education, 50, 77–89. https://doi.org/10.1007/s11858-018-0922-8
Fallas, R., & Lezama, J. (2022). Argumentos variacionales en la comprensión de la concavidad en gráficas de funciones. Perfiles Educativos, 178(44), 130-148. https://doi.org/10.22201/iisue.24486167e.2022.178.60619
Hitt, F., & Dufour, S. (2021). Introduction to calculus through an open-ended task in the context of speed: Representations and actions by students in action. ZDM – Mathematics Education, 53, 635–647. https://doi.org/10.1007/s11858-021-01258-x
Jiménez, A. (2019). Estrategias variacionales usadas por estudiantes de licenciatura en un ambiente tecnológico: El caso de los criterios de la derivada (Tesis de maestría sin publicar). Universidad Autónoma de Coahuila.
Jiménez, A., & Zaldívar, J. (2022). Resultados de un estudio preliminar para el estu-dio de los criterios de la derivada. Investigación e Innovación en Matemática Educativa, 7, 1-26. https://doi.org/10.46618/iime.122
Jones, S. (2017). An exploratory study on student understandings of derivatives in real-world, non-kinematics contexts. Journal of Mathematical Behavior, 45, 95–110. http://dx.doi.org/10.1016/j.jmathb.2016.11.002
Jones, S. (2018). Students’ application of concavity and inflection points to real-world problems. International Journal of Science and Mathematics Education, 17, 523-544. https://doi.org/10.1007/s10763-017-9876-5
Latorre, A. (2005). La investigación-acción. Conocer y cambiar la práctica educativa. Graó.
Mariotti, M., & Maffia, A. (2018). From using artefacts to mathematical meanings: The teacher’s role in the semiotic mediation process. Didattica della Matematica. Dalle Ricerche Alle Pratiche d’Aula, 3, 50–63. https://doi.org/10.33683/ddm.18.4.3.1
Marrongelle, K. A. (2004). How students use physics to reason about calculus tasks. School Science and Mathematics, 104(6), 258–272. https://doi.org/10.1111/j.1949-8594.2004.tb17997.x
Park, J. (2013). Is the derivative a function? If so, how do students talk about it? In-ternational Journal of Mathematical Education in Science and Technology, 44(5), 624-640. https://doi.org/10.1080/0020739X.2013.795248
Rasmussen, C., Borba, M., & Marrongelle, K. (2014). Research on calculus: What do we know and where do we need to go? ZDM Mathematics Education, 46, 507–515. https://doi.org/10.1007/s11858-014-0615-x
Salazar, C., Díaz, H., & Bautista, M. (2009). Descripción de niveles de comprensión del concepto derivada. Tecné, Episteme y Didaxis, 26, 62-82. https://doi.org/10.17227/ted.num26-421
Sealey, V., Infante, N., Campbell, M., & Bolyard, J. (2020). The generation and use of graphical examples in calculus classrooms: The case of the mean value theo-rem. The Journal of Mathematical Behavior, 57. https://doi.org/10.1016/j.jmathb.2019.100743
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Under-lying principles and essential elements. En R. Lesh & A. E. Kelly (Eds.), Re-search design in mathematics and science education (pp. 267-307). Erlbaum.
Suárez, L., & Cordero, F. (2010). Modelación graficación, una categoría para la ma-temática escolar. Resultados de un estudio socioepistemológico. Revista Lati-noamericana de Investigación en Matemática Educativa, 13(4), 319-333.
Swidan, O. (2019). Construction of the mathematical meaning of the function–derivative relationship using dynamic digital artifacts: A case study. Digital Experiences in Mathematics Education, 5, 203-222. https://doi.org/10.1007/s40751-019-00053-4
Thompson, P., & Carlson, M. (2017). Variation, covariation, and functions: Founda-tional ways of thinking mathematically. En J. Cai (Ed.), Compendium for re-search in mathematics education (pp. 421-456). National Council of Teachers of Mathematics.
Thompson, P., & Harel, G. (2021). Ideas foundational to calculus learning and their links to students’ difficulties. ZDM–Mathematics Education, 53, 507–519. https://doi.org/10.1007/s11858-021-01270-1
Urban-Woldron, H. (2014). Comprehension of calculus concept based on motion sensor data. R&E Source, 1. https://journal.ph-noe.ac.at/index.php/resource/article/view/158
Vrancken, S., & Engler, A. (2014). Una introducción a la derivada desde la variación y el cambio: Resultados de una investigación con estudiantes de primer año de la universidad. Bolema: Boletim de Educação Matemática, 28(48), 449-468. https://doi.org/10.1590/1980-4415v28n48a22
Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. CBMS Issues in Mathematics Education, 8, 103-122. https://doi.org/10.1090/cbmath/008/06
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 José David Zaldívar-Rojas, Luis Cabrera, Amaranta Jiménez

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).