Interdisciplinarity Between Mathematics and Physics: Solving Strategies for Simple Proportionality Problems
DOI:
https://doi.org/10.35763/aiem27.5398Keywords:
Simple proportionality, Strategy analysis, Interdisciplinarity, Secondary educationAbstract
This article analyses the strategies used by 3rd year ESO and 1st year Bachelor students to solve simple proportionality problems in mathematics and physics classes, with the aim of understanding how the teaching traditions of each discipline influence students’ responses. The results show that students in the 3rd year of ESO use a greater variety of strategies, while those in the 1st year of Bachelor have a higher success rate. It is also observed that the strategies used in Physics are different from those used in Mathematics, regardless of the year. These findings highlight the importance of interdisciplinary teaching that promotes a deeper understanding of simple proportionality, adapting teaching strategies to the characteristics and needs of students at each educational level.
Downloads
References
Alvargonzález, D. (2011). Multidisciplinarity, interdisciplinarity, transdisciplinari-ty, and the sciences. International Studies in the Philosophy of Science, 25(4), 387–403. https://doi.org/10.1080/02698595.2011.623366
Berg, B. L. (2007). Qualitative research methods for the social sciences. Allyn and Bacon.
Chapman, O. (2006). Classroom practices for context of mathematics word prob-lems. Educational Studies in Mathematics, 62(2), 211–230. https://doi.org/10.1007/s10649-006-7834-1
Choi, B. C. K., & Pak, A. W. P. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Defi-nitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine, 29(6), 351–364.
Cramer, K., Post, T., & Graeber, A. O. (1993). Connecting research to teaching: Pro-portional reasoning. Mathematics Teacher, 86(5), 404–407. https://doi.org/10.5951/MT.86.5.0404
Freudenthal, H. (1978). Didactical phenomenology of mathematical structures. Reidel.
Gabel, D., Sherwood, R., & Enochs, L. (1984). Problem-solving skills of high school chemistry students. Journal of Research in Science Teaching, 21(2), 221–233. https://doi.org/10.1002/tea.3660210212
Jurdak, M. E. (2006). Contrasting perspectives and performance of high school stu-dents on problem solving in real world, situated, and school contexts. Educa-tional Studies in Mathematics, 63(3), 283–301. https://doi.org/10.1007/s10649-005-9008-y
Lamon, S. J. (1993). Ratio and proportion: Connecting content and children’s think-ing. Journal for Research in Mathematical Education, 24(1), 41–61. https://doi.org/10.5951/jresematheduc.24.1.0041
Lau, P. N.-K., Singh, P., & Hwa, T.-Y. (2009). Constructing mathematics in an in-teractive classroom context. Educational Studies in Mathematics, 72(3), 307–324. https://doi.org/10.1007/s10649-009-9196-y
Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In M. Behr & J. Hiebert (Eds.), Number concepts and operations in the middle grades (Vol. 2, pp. 93–118). National Council of Teachers of Mathematics; Lawrence Erlbaum Associates.
Martínez-Juste, S., Muñoz-Escolano, J. M., & Oller-Marcén, A. (2015). Estrategias utilizadas por estudiantes de distintos niveles educativos ante problemas de proporcionalidad compuesta. En C. Fernández, M. Molina, & N. Planas (Eds.), Investigación en educación matemática XIX (pp. 351–359). SEIEM.
Martínez-Juste, S., Muñoz-Escolano, J. M., Oller-Marcén, A., & Rincón, T. (2017). Análisis de problemas de proporcionalidad compuesta en libros de texto de 2º de ESO. Revista Latinoamericana de Investigación en Matemática Educativa, 20(1), 95–122. https://doi.org/10.12802/relime.17.2014
Mejía, J. (2000). El muestreo en la investigación cualitativa. Investigaciones Sociales, 4(5), 165–180. https://doi.org/10.15381/is.v4i5.6851
Michelsen, C. (1998). Expanding context and domain: A cross-curricular activity in mathematics and physics. ZDM—Mathematics Education, 30(4), 100–106. https://doi.org/10.1007/BF02653149
Nunes, T., Desli, D., & Bell, D. (2003). The development of children’s understanding of intensive quantities. International Journal of Educational Research, 39(7), 651–675. https://doi.org/10.1016/j.ijer.2004.10.002
Park, J., Park, H., & Kwon, O. (2010). Characterizing proportional reasoning of mid-dle school students. The SNU Journal of Education Research, 19, 119–144.
Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. In-ternational Journal of Science and Mathematics Education, 10(6), 1393–1414. https://doi.org/10.1007/s10763-012-9344-1
Planinic, M., Ivanjek, L., Susac, A., & Milin-Sipus, Z. (2013). Comparison of univer-sity students’ understanding of graphs in different contexts. Physical Review Special Topics—Physics Education Research, 9(2), 020103. https://doi.org/10.1103/PhysRevSTPER.9.020103
Raviolo, A., Carabelli, P., & Ekkert, T. (2022). Aprendizaje del concepto de densidad: La comprensión de las relaciones entre las variables. Latin-American Journal of Physics Education, 16(2), 2310–2319.
Riehl, S. M., & Steinthorsdottir, O. B. (2019). Missing‐value proportion problems: The effects of number structure characteristics. Investigations in Mathematics Learning, 11(1), 56–68. https://doi.org/10.1080/19477503.2017.1375361
Steinthorsdottir, O. B. (2006). Proportional reasoning: Variable influencing of the problem’s difficulty level and one’s use of problem solving strategies. In J. Novotná, H. Moraová, K. M., & N. Stehliková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 169–176). PME.
Tinoco, J. C., Albarracín, L., & Deulofeu, J. (2021). Estrategias de proporcionalidad simple en las aulas de matemáticas y de física. In In P. D. Diago, D. F. Yáñez, M. T. González-Astudillo, & D. Carrillo (Eds.), Investigación en educación ma-temática XXIV (pp. 587–594). SEIEM.
Tinoco, J. C., Albarracín, L., & Deulofeu, J. (2022). Interdisciplinariedad: Haciendo crecer el concepto de proporcionalidad. Uno: Revista de Didáctica de las Mate-máticas, 96, 68–74.
Van Dooren, W., De Bock, D., Evers, M., & Verschaffel, L. (2009). Students’ overuse of proportionality on missing‐value problems: How numbers may change so-lutions. Journal for Research in Mathematics Education, 40(2), 187–211. https://doi.org/10.2307/40539331
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Juan Carlos Tinoco, Lluís Albarracín, Jordi Deulofeu

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).