Mathematical Understanding Evidenced by Secondary School Students on Exponential and Logarithmic Functions
DOI:
https://doi.org/10.35763/aiem27.6430Keywords:
Mathematical understanding, Exponential function, Logarithmic function, Mathematical connections, Ontosemiotic approachAbstract
A framework of reference on levels of comprehension was refined based on the establishment of mathematical connections. To this end, the networking between the Ontosemiotic Approach to Knowledge and Mathematical Instruction and the Extended Theory of Mathematical Connections is used as a theoretical reference. This qualitative research is a case study in which the productions and responses to a questionnaire of three high school students were analyzed. The data were analyzed using ontosemiotic analysis. The results showed that the refined frame of reference allowed to assess the level of understanding of the students, who, through the establishment of connections, evidenced a different level of understanding concerning the exponential and logarithmic functions. The case studies did not show a high level of understanding; some reasons were due to the lack of time to socialize and deepen some characteristics of the functions during the sessions.
Downloads
References
Businskas, A. M. (2008). Conversations about connections: How secondary mathemat-ics teachers conceptualize and contend with mathematical connections. (Tesis de doctorado no publicada). Simon Fraser University.
Cai, J., & Ding, M. (2015). On mathematical understanding: Perspectives of experi-enced Chinese mathematics teachers. Journal of Mathematics Teacher Educa-tion, 20(1), 5–29. https://doi.org/10.1007/s10857-015-9325-8
Campo, K. (2025). Diseño del proceso de enseñanza [Anexo pdf]. Figshare. https://doi.org/10.6084/m9.figshare.28870985.v1
Campo-Meneses, K. G., Font, V., García-García, J., & Sánchez, A. (2021). Mathe-matical connections activated in high school students’ practice solving tasks on the exponential and logarithmic functions. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), 1–14. https://doi.org/10.29333/ejmste/11126
Campo-Meneses, K. G., García-García, J., & Font, V. (2023). Mathematical connec-tions associated with the exponential logarithmic functions promoted in the mathematics curriculum. International Journal of Instruction, 16(4), 17–36.
Campo-Meneses, K. G., & García-García, J. (2021). La comprensión de las funciones exponencial y logarítmica: Una mirada desde las conexiones matemáticas y el enfoque ontosemiótico. PNA, 16(1), 25–56. https://doi.org/10.30827/pna.v16i1.15817
Campo-Meneses, K. G., & García-García, J. (2023). Conexiones matemáticas identi-ficadas en la clase sobre funciones exponencial y logarítmica. Bolema: Boletim de Educação Matemática, 37(76), 849–871. https://doi.org/10.1590/1980-4415v37n76a22
Dolores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramate-máticas que se producen al resolver problemas de cálculo en contexto: Un es-tudio de casos en el nivel superior. Bolema, 31(57), 158–180. https://doi.org/10.1590/1980-4415v31n57a08
Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical con-nections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297–319. https://doi.org/10.1007/s13394-011-0017-0
Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula (Tesis de doctorado sin publicar). Pennsylvania State University College of Education.
Ferrari-Escolá, M., Martínez-Sierra, G., & Méndez-Guevara, M. E. M. (2016). “Multiply by adding”: Development of logarithmic-exponential covariational reasoning in high school students. Journal of Mathematical Behavior, 42, 92–108. https://doi.org/10.1016/j.jmathb.2016.03.003
Font, V., Godino, J., & D’Amore, B. (2007). An onto-semiotic approach to represen-tations in mathematics education. For the Learning of Mathematics, 27(2), 2–9.
García-García, J. (2024). Mathematical understanding based on the mathematical connections made by Mexican high school students regarding linear equations and functions. The Mathematics Enthusiast, 21(3), 673–718.
García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing calculus tasks. International Jour-nal of Mathematical Education in Science and Technology, 49(2), 227–252. https://doi.org/10.1080/0020739X.2017.1355994
Godino, J., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactiques des Mathématiques, 14(3), 325–355.
Godino, J., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM - International Journal on Mathematics Educa-tion, 39(1–2), 127–135. https://doi.org/10.1007/s11858-006-0004-1
Kuper, E., & Carlson, M. (2020). Foundational ways of thinking for understanding the idea of logarithm. The Journal of Mathematical Behavior, 57. https://doi.org/10.1016/j.jmathb.2019.100740
Morales-López, Y., & Font, V. (2019). Valoración realizada por una profesora de la idoneidad de su clase de matemáticas. Educação e Pesquisa, 45, 1–20. https://doi.org/10.1590/s1678-4634201945189468
National Council of Teachers of Mathematics (NCTM). (2013). Connecting the NCTM process standards and the CCSSM practices. NCTM.
Parra-Urrea, Y., & Pino-Fan, L. (2022). Proposal to systematize the reflection and assessment of the teacher’s practice on the teaching of functions. Mathemat-ics, 10(18), 3330. https://doi.org/10.3390/math10183330
Rodríguez-Nieto, C., Font, V., Borji, V., & Rodríguez-Vásquez, F. M. (2021). Mathe-matical connections from a networking of theories between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 1–27. https://doi.org/10.1080/0020739X.2021.1875071
Rodríguez-Nieto, C., Rodríguez-Vásquez, F. M., Font, V., & Morales-Carballo, A. (2021). Una visión desde la red de teorías TAC-EOS sobre el papel de las cone-xiones matemáticas en la comprensión de la derivada. Revemop, 3, 1–32. https://doi.org/10.33532/revemop.e202115
Stake, R. E. (2005). Investigación con estudio de casos. Ediciones Morata.
Sureda, P., & Otero, M. R. (2013). Estudio sobre el proceso de conceptualización de la función exponencial. Educación Matemática, 25(2), 89–118.
Yao, Y., Hwang, S., & Cai, J. (2021). Preservice teachers’ mathematical understand-ing exhibited in problem posing and problem solving. ZDM - Mathematics Edu-cation, 53(4), 937–949. https://doi.org/10.1007/s11858-021-01277-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Karen Gisel Campo-Meneses, Javier García-García

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).