Mathematical Understanding Evidenced by Secondary School Students on Exponential and Logarithmic Functions

Authors

DOI:

https://doi.org/10.35763/aiem27.6430

Keywords:

Mathematical understanding, Exponential function, Logarithmic function, Mathematical connections, Ontosemiotic approach

Abstract

A framework of reference on levels of comprehension was refined based on the establishment of mathematical connections. To this end, the networking between the Ontosemiotic Approach to Knowledge and Mathematical Instruction and the Extended Theory of Mathematical Connections is used as a theoretical reference. This qualitative research is a case study in which the productions and responses to a questionnaire of three high school students were analyzed. The data were analyzed using ontosemiotic analysis. The results showed that the refined frame of reference allowed to assess the level of understanding of the students, who, through the establishment of connections, evidenced a different level of understanding concerning the exponential and logarithmic functions. The case studies did not show a high level of understanding; some reasons were due to the lack of time to socialize and deepen some characteristics of the functions during the sessions.

Downloads

Download data is not yet available.

References

Businskas, A. M. (2008). Conversations about connections: How secondary mathemat-ics teachers conceptualize and contend with mathematical connections. (Tesis de doctorado no publicada). Simon Fraser University.

Cai, J., & Ding, M. (2015). On mathematical understanding: Perspectives of experi-enced Chinese mathematics teachers. Journal of Mathematics Teacher Educa-tion, 20(1), 5–29. https://doi.org/10.1007/s10857-015-9325-8

Campo, K. (2025). Diseño del proceso de enseñanza [Anexo pdf]. Figshare. https://doi.org/10.6084/m9.figshare.28870985.v1

Campo-Meneses, K. G., Font, V., García-García, J., & Sánchez, A. (2021). Mathe-matical connections activated in high school students’ practice solving tasks on the exponential and logarithmic functions. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), 1–14. https://doi.org/10.29333/ejmste/11126

Campo-Meneses, K. G., García-García, J., & Font, V. (2023). Mathematical connec-tions associated with the exponential logarithmic functions promoted in the mathematics curriculum. International Journal of Instruction, 16(4), 17–36.

Campo-Meneses, K. G., & García-García, J. (2021). La comprensión de las funciones exponencial y logarítmica: Una mirada desde las conexiones matemáticas y el enfoque ontosemiótico. PNA, 16(1), 25–56. https://doi.org/10.30827/pna.v16i1.15817

Campo-Meneses, K. G., & García-García, J. (2023). Conexiones matemáticas identi-ficadas en la clase sobre funciones exponencial y logarítmica. Bolema: Boletim de Educação Matemática, 37(76), 849–871. https://doi.org/10.1590/1980-4415v37n76a22

Dolores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramate-máticas que se producen al resolver problemas de cálculo en contexto: Un es-tudio de casos en el nivel superior. Bolema, 31(57), 158–180. https://doi.org/10.1590/1980-4415v31n57a08

Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical con-nections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297–319. https://doi.org/10.1007/s13394-011-0017-0

Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula (Tesis de doctorado sin publicar). Pennsylvania State University College of Education.

Ferrari-Escolá, M., Martínez-Sierra, G., & Méndez-Guevara, M. E. M. (2016). “Multiply by adding”: Development of logarithmic-exponential covariational reasoning in high school students. Journal of Mathematical Behavior, 42, 92–108. https://doi.org/10.1016/j.jmathb.2016.03.003

Font, V., Godino, J., & D’Amore, B. (2007). An onto-semiotic approach to represen-tations in mathematics education. For the Learning of Mathematics, 27(2), 2–9.

García-García, J. (2024). Mathematical understanding based on the mathematical connections made by Mexican high school students regarding linear equations and functions. The Mathematics Enthusiast, 21(3), 673–718.

García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing calculus tasks. International Jour-nal of Mathematical Education in Science and Technology, 49(2), 227–252. https://doi.org/10.1080/0020739X.2017.1355994

Godino, J., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactiques des Mathématiques, 14(3), 325–355.

Godino, J., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM - International Journal on Mathematics Educa-tion, 39(1–2), 127–135. https://doi.org/10.1007/s11858-006-0004-1

Kuper, E., & Carlson, M. (2020). Foundational ways of thinking for understanding the idea of logarithm. The Journal of Mathematical Behavior, 57. https://doi.org/10.1016/j.jmathb.2019.100740

Morales-López, Y., & Font, V. (2019). Valoración realizada por una profesora de la idoneidad de su clase de matemáticas. Educação e Pesquisa, 45, 1–20. https://doi.org/10.1590/s1678-4634201945189468

National Council of Teachers of Mathematics (NCTM). (2013). Connecting the NCTM process standards and the CCSSM practices. NCTM.

Parra-Urrea, Y., & Pino-Fan, L. (2022). Proposal to systematize the reflection and assessment of the teacher’s practice on the teaching of functions. Mathemat-ics, 10(18), 3330. https://doi.org/10.3390/math10183330

Rodríguez-Nieto, C., Font, V., Borji, V., & Rodríguez-Vásquez, F. M. (2021). Mathe-matical connections from a networking of theories between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 1–27. https://doi.org/10.1080/0020739X.2021.1875071

Rodríguez-Nieto, C., Rodríguez-Vásquez, F. M., Font, V., & Morales-Carballo, A. (2021). Una visión desde la red de teorías TAC-EOS sobre el papel de las cone-xiones matemáticas en la comprensión de la derivada. Revemop, 3, 1–32. https://doi.org/10.33532/revemop.e202115

Stake, R. E. (2005). Investigación con estudio de casos. Ediciones Morata.

Sureda, P., & Otero, M. R. (2013). Estudio sobre el proceso de conceptualización de la función exponencial. Educación Matemática, 25(2), 89–118.

Yao, Y., Hwang, S., & Cai, J. (2021). Preservice teachers’ mathematical understand-ing exhibited in problem posing and problem solving. ZDM - Mathematics Edu-cation, 53(4), 937–949. https://doi.org/10.1007/s11858-021-01277-8

Published

2025-05-02

How to Cite

Campo-Meneses, K. G., & García-García, J. (2025). Mathematical Understanding Evidenced by Secondary School Students on Exponential and Logarithmic Functions. Advances of Research in Mathematics Education, (27), 179–201. https://doi.org/10.35763/aiem27.6430

Issue

Section

Artículos