Extra-mathematical Connections Made by Prospective Elementary School Teachers when Designing Geometric Homework Assignments
DOI:
https://doi.org/10.35763/aiem25.6441Keywords:
Extra-mathematical connections, Teacher training, Geometry, Primary school, Ontosemiotic approachAbstract
We describe the extra-mathematical connections that emerge when a group of 250 prospective elementary school teachers are confronted with two professional tasks that deal with different geometric notions. The analysis considers the theory of extra-mathematical connections and the tool of the Ontosemiotic Approach (epistemic configurations) to evidence the emergence of generic metaphorical and interdisciplinary connections; the former referred to the constitution of a metaphor as a tool to access from an extra-mathematical idea to an intra-mathematical object; while the latter refers to the use of elements belonging to a particular discipline and therefore extra-mathematical, to understand an intra-mathematical object. The results and conclusions revolve around the evidence presented on the emergence of such connections. It contributes to the reflection on the theory of extra-mathematical connections, and it shows the potential of the design of school tasks in the training processes of Primary Education teachers.
Downloads
References
Alsina, Á. (2014). Procesos matemáticos en Educación Infantil: 50 ideas clave. Números, 86, 5-28.
Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections. [Tesis doctoral no publicada]. Simon Fraser University, Canadá.
Chamoso, J., & Cáceres, M. (2019). Creación de tareas por futuros docentes de matemáticas a partir de contextos reales. Cuadernos de Investigación y Formación en Educación Matemática, 18, 59-69.
Coxford, A. F. (1995). The case for connections. En P. A. House & A. F. Coxford (Eds.), Connecting mathematics across the curriculum (pp. 3-12). National Council of Teachers of Mathematics.
da Ponte, J. P. (2004). Problemas e investigaciones en la actividad matemática de los alumnos. En J. Giménez, L. Santos, & J. P. Ponte (Eds.), La actividad matemática en el aula (pp. 25-34). Graó.
de Gamboa, G., & Figueiras, L. (2014). Conexiones en el conocimiento matemático del profesor: propuesta de un modelo de análisis. En M. T. González, M. Codes, D. Arnau & T. Ortega (Eds.), Investigación en Educación Matemática XVIII (pp. 337-344). SEIEM.
Eli, J., Mohr-Schroeder, M., & Lee, C. (2011). Exploring mathematical connections of prospective Middle-grades teachers through card-sorting tasks. Mathematical Education Research Journal, 23(3), 297-319. https://doi.org/10.1007/s13394-011-0017-0
Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula. [Unpublished doctoral dissertation]. Pennsylvania State University College of Education. EE.UU.
Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82, 97-124. https://doi.org/10.1007/s10649-012-9411-0
García-García, J. G. (2019). Escenarios de exploración de conexiones matemáticas. Números: Revista de didáctica de las matemáticas, 100, 129-133.
García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.1355994
García-García, J., & Dolores-Flores, C. (2020). Exploring pre-university students’ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 912-936. https://doi.org/10.1080/0020739X.2020.1729429
Godino, J., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en didactique des Mathématiques, 14(3), 325-355.
Godino, J., Batanero, C., & Font, V. (2007). The Ontosemiotic approach to research in mathematics education. ZDM–The International Journal on Mathematics Education, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J., Giacomone, B., Font, V., & Pino-Fan, L. (2018). Conocimientos profesionales en el diseño y gestión de una clase sobre semejanza de triángulos. Análisis con herramientas del modelo CCDM. AIEM- Avances de Investigación En Educación Matemática, 13, 63-83. https://doi.org/10.35763/aiem.v0i13.224
Hernández, R., Fernández, C., & Baptista, P. (2010) Metodología de la Investigación (5ª ed.). McGraw-Hill.
Kenedi, A. K., Helsa, Y., Ariani, Y., Zainil, M., & Hendri, S. (2019). Mathematical connection of elementary school students to solve mathematical problems. Journal on Mathematics Education, 10(1), 69-80. https://doi.org/10.22342/jme.10.1.5416.69-80
Lakoff, G., & Núñez, R. (2000) Where Mathematics comes from. How the embodied mind brings Mathematics into being. Basic Books.
National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. Autor.
Rebello, N., Cui, L., Bennett, A., Zollman, D., & Ozimek, D. (2017). Transfer of learning in problem solving in the context of mathematics and physics. In D. Jonassen (Ed.), Learning to Solve Complex Scientific Problems (1st edition, pp. 223-246). Routledge. https://doi.org/10.4324/9781315091938-10
Rodríguez-Nieto, C., Rodríguez-Vásquez, F., & Font, V. (2020). A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256. https://doi.org/10.1080/0020739X.2020.1799254
Rodríguez-Nieto, C., Rodríguez-Vásquez, F., Font, V., & Morales, A. (2021). Una visión desde la red de teorías TAC-EOS sobre el papel de las conexiones matemáticas en la comprensión de la derivada. Revemop, 3, 1-32. https://doi.org/10.33532/revemop.e202115
Sullivan, P., Clarke, D., Clarke, B., & O’Shea, H. (2010). Exploring the relationship between task, teacher actions, and student learning. PNA, 4(4), 133-142. https://doi.org/10.30827/pna.v4i4.6163
Vanegas, Y., & Giménez, J. (2018). Conexões extramatemáticas na formação inicial de docentes. Estudos Avançados, 32(94), 153-169. https://doi.org/10.1590/s0103-40142018.3294.0012
Wittmann, E. C. (2021). Connecting Mathematics and Mathematics Education: Collected Papers on Mathematics Education as a Design Science. Springer.
Yin, R. (2014) Case Study Research: design and methods. Sage Publications.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Juan Pablo Vargas Herrera, Yuly Vanegas, Joaquin Giménez
This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).