Characterising how research mathematicians conjecture: A case study
DOI:
https://doi.org/10.35763/aiem24.4223Keywords:
Conjecturing, Using, Creating, Case study, Research mathematicianAbstract
This work belongs to the research field in mathematics education that studies the mathematical activities that research mathematicians develop when constructing mathematical knowledge. Specifically, the aim of this paper is to characterise the mathematical practice of conjecturing of this community of professionals. For this purpose, what a research mathematician uses and creates (in terms of Rasmussen et al., 2005) when conjecturing during her research is analysed. A case study methodological approach is adopted. The results of this study show the relevant role that examples play in the horizontal dimension of the mathematical practice of conjecturing, highlighting how and when those examples are used and created.
Downloads
References
Alibert, D., & Thomas, M. (1991). Research on mathematical proof. En D. Tall (Ed.), Advanced mathematical thinking (pp. 215-230). Kluwer.
Alvarado, A., & González-Astudillo, M. T. (2014). Definir, buscar ejemplos, conjeturar... para probar si un número es feliz. Avances de Investigación en Educación Matemática, 5, 5-24. https://doi.org/10.35763/aiem.v1i5.73
Antonini, S. (2011). Generating examples: Focus on processes. ZDM Mathematics Education, 43(2), 205-217. https://doi.org/10.1007/s11858-011-0317-6
Boero, P. (Ed.) (2007). Theorems in school: From history, epistemology and cognition to classroom practice. Sense Publishers.
Burton, L. (1998). The practices of mathematicians: What do they tell us about coming to know mathematics? Educational Studies in Mathematics, 37(2), 121-143. https://doi.org/10.1023/A:1003697329618
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D. A., & Yevdokimov, O. (2008). Perspectivas teóricas en el proceso de elaboración de conjeturas e implicaciones para la práctica: Tipos y pasos. Enseñanza de las Ciencias, 26(3), 431-444. https://doi.org/10.5565/rev/ensciencias.3753
Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5ª ed.). Routledge. http://doi.org/10.4324/9780203224342
Eldred, A. A., & Veeramani, P. (2006). Existence and convergence of best proximity points. Journal of Mathematical Analysis and Applications, 323(2), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
Fernández-León, A., & Gavilán-Izquierdo, J. M. (2019). Avanzando en la caracterización de las prácticas matemáticas de conjeturar y probar de los matemáticos profesionales. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano & Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 283-292). SEIEM.
Fernández-León, A., Gavilán-Izquierdo, J. M., & Toscano, R. (2021). A case study of the practices of conjecturing and proving of research mathematicians. International Journal of Mathematical Education in Science and Technology, 52(5), 767-781. https://doi.org/10.1080/0020739X.2020.1717658
Hartshorne, C., & Weiss, P. (Eds.) (1978). Collected papers of Charles Sanders Peirce, volumes I and II: Principles of philosophy and elements of logic. Harvard University Press.
Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1-16. https://doi.org/10.1007/s10649-017-9761-8
Lakatos, I. (1976). Proof and refutations: The logic of mathematical discovery. Cambridge University Press. https://doi.org/10.1017/CBO9781139171472
Laursen, S. L., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate mathematics. International Journal of Research in Undergraduate Mathematics Education, 5(1), 129-146. https://doi.org/10.1007/s40753-019-00085-6
Lockwood, E., DeJarnette, A. F., & Thomas, M. (2019). Computing as a mathematical disciplinary practice. Journal of Mathematical Behavior, 54, 1-18. https://doi.org/10.1016/j.jmathb.2019.01.004
Lockwood, E., Ellis, A. B., & Lynch, A. G. (2016). Mathematicians’ example-related activity when exploring and proving conjectures. International Journal of Research in Undergraduate Mathematics Education, 2(2), 165-196. https://doi.org/10.1007/s40753-016-0025-2
Lynch, A. G., & Lockwood, E. (2019). A comparison between mathematicians’ and students’ use of examples for conjecturing and proving. Journal of Mathematical Behavior, 53, 323-338. https://doi.org/10.1016/j.jmathb.2017.07.004
Martín-Molina, V., González-Regaña, A., & Gavilán-Izquierdo, J. M. (2018). Researching how professional mathematicians construct new mathematical definitions: A case study. International Journal of Mathematical Education in Science and Technology, 49(7), 1069-1082. https://doi.org/10.1080/0020739X.2018.1426795
Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. Addison Wesley.
Misfeldt, M., & Johansen, M. W. (2015). Research mathematicians’ practices in selecting mathematical problems. Educational Studies in Mathematics, 89(3), 357-373. https://doi.org/10.1007/s10649-015-9605-3
Polya, G. (1954). Mathematics and plausible reasoning: Patterns of plausible inference. Princeton University Press.
Rasmussen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancing mathematical activity: A practice-oriented view of advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 51-73. https://doi.org/10.1207/s15327833mtl0701_4
Tall, D. (Ed.) (1991). Advanced mathematical thinking. Kluwer. https://doi.org/10.1007/0-306-47203-1
Weber, K., Dawkins, P., & Mejia-Ramos, J. P. (2020). The relationship between mathematical practice and mathematics pedagogy in mathematics education research. ZDM Mathematics Education, 52(6), 1063-1074. https://doi.org/10.1007/s11858-020-01173-7
Weber, K., & Fukawa-Connelly, T. (2022). What mathematicians learn from attending other mathematicians’ lectures. Educational Studies in Mathematics, 112(1), 123-139. https://doi.org/10.1007/s10649-022-10177-x
Weber, K., & Inglis, M. (2021). Mathematics education research on mathematical practice. En B. Sriraman (Ed.), Handbook of the history and philosophy of mathematical practice (pp. 1-28). Springer. https://doi.org/10.1007/978-3-030-19071-2_88-1
Weber, K., Inglis, M., & Mejia-Ramos, J. P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist, 49(1), 36-58. https://doi.org/10.1080/00461520.2013.865527
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 José María Gavilán-Izquierdo, Aurora Fernández-León
This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).