Mental constructs associated with eigenvalues and eigenvectors: refining a cognitive model

Authors

DOI:

https://doi.org/10.35763/aiem22.4005

Keywords:

Eigenvalues and Eigenvectors, APOS theory, Genetic decomposition, Linear transformation, Linear algebra

Abstract

Empirical evidence is presented on the mental structures and mechanisms necessary for learning the concept of eigenvalue and eigenvector from the linear transformation, using the research paradigm of the APOE (Action, Process, Object, Scheme) theory. The data of the study are the result of the implementation of teaching based on a cognitive model (Genetic Decomposition) located in a regular linear algebra course of a public university in Colombia. The empirical evidence allows to show a refined cognitive model in relation to the key structures and mechanisms, to account for the Processes underlying the eigenvalue and eigenvector Process and to generate discussion in relation to the whole Process. The recommendations for teaching specify the importance of providing various situations involving the linear transformation and its coordination with the Processes: zero vector - not an eigenvector; solution set of T(v)=)=λ_0v; null space and determinant.

Downloads

Download data is not yet available.

References

Andrews-Larson, C., Wawro, M., & Zandieh, M. (2017). A hypothetical learning trajectory for conceptualizing matrices as linear transformations. International Journal of Mathematical Education in Science and Technology, 48(6), 809-829. https://doi.org//10.1080/0020739X.2016.1276225

Arnon, L., Cottrill, J., Dubinsky, E., Oktaç, A., Roa-Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS Theory a framework for research and curriculum education. Springer Netherlands. https://doi.org.//10.1007/978-1-4614-7966-6

Beltrán-Meneu, M., Murillo-Arcila, M., & Albarracin, L. (2017). Emphasizing visualization and physical applications in the study of eigevectors and eigenvalors. Teaching Mathematics and its applications, 36(3), 123-135. http://doi.org//10.1093/teamat/hrw018

Beltrán-Meneu, M., Murillo-Arcila, M., & Jordán, E. (2017). A teaching proposal for the study of eigevectors and eigenvalors. Journal of Technology and Science Education, 7(1), 100-113. http://doi.org.//10.3926/jotse.260

Betancur-Sánchez, A., Roa-Fuentes, S., & Ballesteros, S. (2021). Una descomposición genética preliminar del concepto de eigenvalor y eigenvector: el análisis de libros de texto como sustrato en la construcción de modelos cognitivos. Revista Latinoamericana de Investigación en Matemática Educativa, 24(3), 245-276. https://doi.org/10.12802/relime.21.2431

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). Kluwer.

González, D., & Roa-Fuentes, S. (2017). Un esquema de transformación lineal: construcción de objetos abstractos a partir de la interiorización de acciones concretas. Enseñanza de las ciencias, 35(2), 89-107. https://doi.org/10.5565/rev/ensciencias.2150

Klasa, J. (2010). A few pedagogical designs in linear algebra with Cabri and Maple. Linear algebra and its applications, 432(8), 2100-2111. http://doi.10.1016/j.laa.2009.08.039

Larson, C., & Zandieh, M. (2013). Three interpretations of the matrix equation Ax = b. For the Learning of Mathematics, 33(2), 11–17.

Parraguez, M., & Oktaç, A. (2012). El desarrollo de un Esquema del concepto de espacio vectorial. Paradigma, 33(1), 103-134.

Parraguez, M., Roa-Fuentes, S., Jiménez, R., & Betancur-Sanchez, A. (2022). Estructuras y mecanismos mentales que desde una perspectiva geométrica modelan y articulan el aprendizaje de valor y vector propio en R^2 . Revista Latinoamericana de Investigación en Matemática Educativa, 25(1), 63-92. http://doi.org/10.12802/relime.22.2513

Piaget, J. (1975). Piaget’s theory (G. Cellerier & J. Langer, trans.). In P.B. Neubauer (Ed.), The process of child development (pp. 164–212). Jason Aronson.

Plaxco, D., Zandieh, M., &Wawro, M. (2018) Stretch Directions and Stretch Factors: A Sequence Intended to Support Guided Reinvention of Eigenvector and Eigenvalue. In: S. Stewart, C. Andrews-Larson, A. Berman, & M. Zandieh (Eds.), Challenges and Strategies in Teaching Linear Algebra (pp. 175-192). ICME-13 Monographs. Springer, Cham.

Roa-Fuentes, S. & Oktaç, A. (2010). Construción de una descomposición genética: análisis teórico del concepto transformación lineal. Revista Latinoamericana de Investigación en Matemática Educativa, 13(1), 89-112.

Roa-Fuentes, S. & Parraguez, M. (2017). Estructuras Mentales que Modelan el Aprendizaje de un Teorema del Álgebra Lineal: Un Estudio de Casos en el Contexto Universitario. Formación Universitaria, 10(4), 15-32. http://dx.doi.org/10.4067/S0718-50062017000400003

Salgado, H., & Trigueros, M. (2014). Una experiencia de enseñanza de los valores, vectores y espacios propios basada en la teoría APOE. Educación Matemática, 26(3), 75-107.

Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using models and APOS theory. The Journal of Mathematical Behavior, 39, 100-120. https://doi.org/10.1016/j.jmathb.2015.06.005

Schonefeld, S. (1995). Eigenpictures: Picturing the Eigenvector Problem. The College Mathematics Journal, 26(4), 316-319.

Stewart, S., Andrews-Larson, C., Berman, A., & Zandieh, M. (Eds.) (2018). Challenges and Strategies in Teaching Linear Algebra. Springer.

Thomas, M., & Stewart, S. (2011). Eigenvalues and eigenvectors: embodied, symbolic, and formal thinking. Mathematics Education Research Group of Austaralasia, 23(275), 275-296. https://doi.org/10.1007/s13394-011-0016-1

Wawro, M., Zandieh, M., Rasmussen, C., & Andrews-Larson, C. (2013). Inquiry oriented linear algebra: Course materials. http://iola.math.vt.edu

Yáñez, A. (2015). Construcción de los conceptos de valores y vectores propios en R^2y R^3, desde la teoría APOE [Tesis de Maestría no publicada]. Pontificia Universidad Católica de Valparaíso.

Published

2022-10-31

How to Cite

Betancur Sánchez, A. ., Roa, S., & Parraguez, M. . (2022). Mental constructs associated with eigenvalues and eigenvectors: refining a cognitive model. Advances of Research in Mathematics Education, (22), 23–46. https://doi.org/10.35763/aiem22.4005

Issue

Section

Artículos