Study on the cognitive construction of the change of basis matrix in terms of APOS Theory

Authors

  • Esteban Mendoza-Sandoval Universidad Autónoma de Guerrero
  • Flor Monserrat Rodríguez-Vásquez Universidad Autónoma de Guerrero
  • Solange Roa-Fuentes Universidad Industrial de Santander
  • Jesús Romero-Valencia Universidad Autónoma de Guerrero

DOI:

https://doi.org/10.35763/aiem20.4011

Keywords:

Genetic decomposition, reflexive abstraction, change of basis, linear algebra

Abstract

This article shows the construction of the change of basis matrix in linear algebra. Based on the APOS theory as a theoretical and methodological framework, the structures and mental mechanisms are described to obtain a genetic decomposition based on the conceptions that students have about such a  concept. A diagnostic test was applied to 28 undergraduate students (18-21 years of age). Semi-structured interviews were also conducted. The results show at least two trajectories in the construction of change of basis matrix concept, which differ in the internalization of mental actions.

Downloads

Download data is not yet available.

References

Anton, H. (1994). Introducción al álgebra lineal. Editorial Limusa. https://doi.org/10.1007/978-1-4614-7966-6

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa, S., Trigueros, M. y Weller, K. (2014). APOS Theory. A framework for research and curriculum development in mathematics education. Springer.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. En D. Tall (ed.), Advanced mathematical thinking (pp. 95-123). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47203-1_7

Florey, F. (1980). Fundamentos de álgebra lineal y aplicaciones. Prentice-Hall.

Grossman, S. (2008). Álgebra lineal. McGraw-Hill.

Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. En J. L. Dorier (ed.), On the teaching of linear algebra (pp. 191-207). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47224-4_7

Hillel, J. y Sierpinska, A. (1994). On one persistent mistake in linear algebra. En J. P. Ponte y J. F. Matos (eds.), Proceedings PME18 (vol. 3, pp. 65-72). PME.

Hoffman, K. y Kunze, R. (1973). Álgebra lineal. Prentice-Hall.

Montiel, M., Wilhelmi, M. R., Vidadkovic, D. y Elstak, I. (2012). Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning. International Journal of Mathematical Education in Science and Technology, 43(1), 11-32. https://doi.org/10.1080/0020739X.2011.582173

Parraguez, M., Lezama, J. y Jiménez, R. (2016). Estructuras mentales para modelar el aprendizaje del teorema de cambio base de vectores. Enseñanza de las Ciencias, 34(2), 129-150. https://doi.org/10.5565/rev/ensciencias.1950

Poole, D. (2011). Álgebra lineal. Una introducción moderna. Cengage Learning.

Roa-Fuentes, S. y Oktaç, A. (2012). Validación de una descomposición genética de transformación lineal: Un análisis refinado por la aplicación del ciclo de investigación de la teoría APOE. RELIME, 15(2), 199-232.

Selby, C. (2016). Where am I? A change of basis project. PRIMUS. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 26(1), 29-38. https://doi.org/10.1080/10511970.2015.1033796

Trigueros, M. (2005). La noción de esquema en la investigación en matemática educativa a nivel superior. Educación Matemática, 17(1), 5-31.

Trigueros, M., Maturana, I., Parraguez, M. y Rodríguez, M. (2015). Construcciones y mecanismos mentales para el aprendizaje del teorema matriz asociada a una transformación lineal. Educación Matemática, 27(2), 95-124.

Trigueros, M. y Oktaç, A. (2019). Task design in APOS Theory. Avances de Investigación en Educación Matemática, 15, 43-55. https://doi.org/10.35763/aiem.v0i15.256

Published

2021-10-25

How to Cite

Mendoza-Sandoval, E., Rodríguez-Vásquez, F. M., Roa-Fuentes, S., & Romero-Valencia, J. (2021). Study on the cognitive construction of the change of basis matrix in terms of APOS Theory. Advances of Research in Mathematics Education, (20), 65–87. https://doi.org/10.35763/aiem20.4011

Issue

Section

Artículos