Meanings on the derivative evidenced by Engineering students at a Mexican university
DOI:
https://doi.org/10.35763/aiem20.4002Keywords:
Derivative, partial meanings, engineering education, calculus’ teachingAbstract
This paper’s goal is to answer the question: What is the meaning of the mathematical object Derivative for a group of future engineers? The Ontosemiotic Approach to Mathematical Cognition and Instruction (OSA) is used as theoretical reference. The methodology considers a reconstruction of the Derivative’s partial meanings for the design, and application of a questionnaire with eight tasks to identify the use of these partial meanings. The participants' responses were analyzed using the ontosemiotic analysis method. We conclude that the predominant partial meaning is linked to the idea of a tangent line to the graph of the original function, with the observation of the preference for the use of the graphic register instead of the tabular one. We close the paper with some reflections on the tasks that Calculus courses specialized for engineers should consider.
Downloads
References
Arcos., J. I. (2019). Una presentación de los conceptos del cálculo, en escuelas de ingeniería, no centrada en la definición de límite. El Cálculo y su Enseñanza. Enseñanza de las Ciencias y la Matemática, 12(1), 46-59.
Arcos, J. I. y Sepúlveda, A. (2014). Desarrollo conceptual del cálculo. Desarrollo histórico de los conceptos del cálculo: Una perspectiva docente. Universidad Autónoma del Estado de México.
Ariza, Á. y Llinares, S. (2009). Sobre la aplicación y uso del concepto de derivada en el estudio de conceptos económicos en estudiantes de bachillerato y universidad. Enseñanza de las Ciencias, 27(1), 121-136. https://doi.org/10.5565/rev/ensciencias.3667
Artigue, M., Batanero, C. y Kent, P. (2007). Mathematics thinking and learning at post-secondary level. En F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 1011-1049). NCTM e IAP.
Bingolbali, E., Monaghan, J. y Roper, T. (2007). Engineering students’ conceptions of the derivative and some implications for their mathematical education. International Journal of Mathematical Education in Science and Technology, 38(6), 763-777. https://doi.org/10.1080/00207390701453579
Cuevas, O., Larios, V., Peralta, J. X. y Jiménez, A. R. (2018). Mathematical knowledge of students who aspire to enroll in engineering programs. International Electronic Journal of Mathematics Education, 13(3), 161-169. https://doi.org/10.12973/iejme/3832
Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5, 37-65.
Gnedenko, B. V. y Khalil, Z. (1979). The mathematical education of engineers. Educational Studies in Mathematics, 10(1), 71-83. https://doi.org/10.1007/BF00311176
Godino, J. D., Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J. D., Batanero, C. y Font, V. (2019). The Onto-semiotic Approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37-42.
Habre, S. y Abboud, M. (2006). Students’ conceptual understanding of a function and its derivative in an experimental calculus course. Journal of Mathematical Behavior, 25(1), 57-72. https://doi.org/10.1016/j.jmathb.2005.11.004
Hitt, F. (2005). Dificultades en el aprendizaje del cálculo. En J. C. Cortés y F. Hitt (Eds.), Reflexiones sobre el aprendizaje del cálculo y su enseñanza (pp. 81-107). Morevallado Editores.
Kendal, M. y Stacey, K. (2001). The impact of teacher privileging on learning differentiation with technology. International Journal of Computers for Mathematical Learning, 6(2), 143–165. https://doi.org/10.1023/A:1017986520658
Kleiber, G. (1995). La semántica de los prototipos. Visor Libros.
Montoya, E., Páez, R. E. y Vivier, L. (2017). Les perspectives de localité dans le travail en analyse. En I. Gómez et al. (Eds.), Proceedings Fifth ETM Symposium (pp. 79-94). University of Western Macedonia.
Orts, A., Llinares, S. y Boigues, F. J. (2016). Elementos para una descomposición genética del concepto de recta tangente. Avances de Investigación en Educación Matemática, 10, 111-134.
Park, J. (2015). Is the derivative a function? If so, how do we teach it? Educational Studies in Mathematics, 89(2), 233–250.
https://doi.org/10.1007/s10649-015-9601-7
Pino-Fan, L. R., Castro, W. F., Godino, J. D. y Font, V. (2013). Idoneidad epistémica del significado de la derivada en el currículo de bachillerato. Paradigma, 34(2), 123-150.
Pino-Fan, L. R., Font, V., Gordillo, W., Larios O. y Breda, A. (2018). Analysis of the meanings of the antiderivative used by students of the first engineering courses. International Journal of Science and Mathematics Education, 16(6), 1091-1113. https://doi.org/10.1007/s10763-017-9826-2
Pino-Fan, L. R., Godino, J. D. y Font M., V. (2011). Faceta epistémica del conocimiento didáctico-matemático sobre la derivada. Educação Matematica e Pesquisa, 13(1), 141-178.
Romo-Vázquez, A. (2014). La modelización matemática en la formación de ingenieros. Educación Matemática, 26(Especial 25 Años), 314-338.
Scaglia, S. y Moriena, S. (2005). Prototipos y estereotipos en geometría. Educación Matemática, 17(3), 105-120.
Vargas, M. F., Fernández-Plaza, J. A. y Ruiz-Hidalgo, J. F. (2020). Análisis de los argumentos dados por docentes en formación a una tarea sobre derivadas. PNA, 14 (3), 173-203.
Downloads
Published
How to Cite
Issue
Section
License
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).