What’s new with APOS theory? A look into levels and Totality

Authors

  • Asuman Oktac Cinvestav-IPN (Mexico)

DOI:

https://doi.org/10.35763/aiem21.4245

Keywords:

APOS theory, Levels, Transition, Totality, Mental structures and mechanisms

Abstract

This paper focusses on developments concerning transitional aspects of learning from the perspective of APOS (Action—Process—Object—Schema) theory. Recent investigations about levels between stages and Totality as a possible new structure are commented on, as well as offering related pedagogical suggestions and ideas for future research.

Downloads

Download data is not yet available.
Supporting Agencies
ConTex

References

Arnon, I. (1998). In the mind’s eye: How children develop mathematical concepts—Extending Piaget’s theory (Unpublished doctoral thesis). Haifa University, Israel.

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M. & Weller, K. (2014). APOS Theory: A framework for research and curriculum development in mathematics education. Springer. https://doi.org/10.1007/978-1-4614-7966-6

Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. In J. Kaput, A. H. Schoenfeld & E. Dubinsky (Eds.), Research in Collegiate mathematics education II. CBMS issues in mathematics education (Vol. 6, pp. 1–32). American Mathematical Society. https://doi.org/10.1090/cbmath/006/01

Brown, A., McDonald, M. & Weller, K. (2010). Step by step: Infinite iterative processes and actual infinity. In F. Hitt, D. Holton y P. W. Thompson (Eds.), Research in Collegiate Mathematics Education VII CBMS Issues in Mathematics Education, 16, (pp. 115-141). American Mathematical Society. https://doi.org/10.1090/cbmath/016/05

Dubinsky, E., Weller, K. & Arnon, I. (2013). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion: The Case of 0.999... and 1. Canadian Journal of Science, Mathematics, and Technology Education, 13(3), 232-258. https://doi.org/10.1080/14926156.2013.816389

Dubinsky, E., Weller, K., Stenger, K. & Vidakovic, D. (2008). Infinite iterative processes: The Tennis Ball Problem. European Journal of Pure and Applied Mathematics, 1(1), 99-121.

Gueudet, G., Bosch, M., DiSessa, A. A., Nam Kwon, O. & Verschaffel, L. (2016). Transitions in mathematics education. Springer Nature. https://doi.org/10.1007/978-3-319-31622-2

Oktaç, A., Vázquez Padilla, R., Ramírez Sandoval, O. & Villabona Millán, D. (2021). Transitional points in constructing the preimage concept in linear algebra. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2021.1968523

Piaget, J. (1975). Piaget’s theory (G. Cellerier & J. Langer, Trans.). In P.B. Neubauer (Ed.), The process of child development (pp. 164–212). Jason Aronson.

Piaget, J. (1976). The grasp of consciousness (S. Wedgwood, Trans.). Harvard University Press. (Original work published 1974).

Roa Fuentes, D. S. (2012). El infinito: un análisis cognitivo de niños y jóvenes talento en matemáticas (Unpublished doctoral thesis). Cinvestav-IPN, Mexico.

Villabona Millán, D. P. (2020). Construcción de concepciones dinámicas y estáticas del infinito matemático en contextos paradójicos, del cálculo diferencial y de la teoría de conjuntos. Unpublished doctoral thesis. Cinvestav-IPN, Mexico.

Villabona, D., Roa Fuentes, S. & Oktaç, A. (2022). Concepciones dinámicas y estáticas del infinito: Procesos continuos y sus totalidades. Enseñanza de las Ciencias, 40(1), 179-187. https://doi.org/10.5565/rev/ensciencias.3277

Downloads

Published

2022-04-26

How to Cite

Oktac, A. . (2022). What’s new with APOS theory? A look into levels and Totality. Advances of Research in Mathematics Education, (21), 9–21. https://doi.org/10.35763/aiem21.4245

Most read articles by the same author(s)