Formulación de problemas y uso de IA: Creencias motivacionales en futuros docentes de primaria

Autores/as

DOI:

https://doi.org/10.35763/aiem28.7546

Palabras clave:

Formulación de problemas, Creencias motivacionales, Chatbots, Inteligencia artificial, Prácticas docentes

Resumen

La formulación de problemas es una actividad fundamental para la educación matemática que, al igual que otras prácticas, es desafiada por las creencias motivacionales de los docentes y el uso de inteligencia artificial (IA). En este estudio, aplicamos un instrumento propio, el cuestionario ForPro-IA, para evaluar las percepciones como formuladores de problemas y usuarios de IA de 175 futuros maestros de primaria. Como resultado, encontramos que los participantes consideran la formulación de problemas más útil y con menores costes asociados en comparación con el uso de IA. El diseño, validación y aplicación del instrumento se presentan asimismo como un aporte original al campo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554

Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.

Baumanns, L., & Rott, B. (2022). The process of problem posing: Development of a descriptive phase model of problem posing. Educational Studies in Mathematics, 110(2), 251–269. https://doi.org/10.1007/s10649-021-10136-y

Berryhill, A., Chandler, L., Bondurant, L., & Sapkota, B. (2024). Using ChatGPT as a thought partner in writing relevant proportional reasoning word problems. Connections, 4(33).

Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond dichotomies: Competence viewed as a continuum. Zeitschrift für Psychologie, 223(1), 3–13. https://doi.org/10.1027/2151-2604/a000194

Burgos, M., Tizón-Escamilla, N., & Chaverri, J. (2024). A model for problem creation: Implications for teacher training. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-023-00482-w

Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem posing: Theoretical considerations, methodology, and directions for future research. International Journal of Educational Research, 102, 101391. https://doi.org/10.1016/j.ijer.2019.01.001

Cai, J., Koichu, B., Rott, B., & Jiang, C. (2024). Advances in research on mathematical problem posing: Focus on task variables. The Journal of Mathematical Behavior, 76, 101186. https://doi.org/10.1016/j.jmathb.2024.101186

Cai, J., & Rott, B. (2024). On understanding mathematical problem-posing processes. ZDM – Mathematics Education, 56(1), 61–71.

https://doi.org/10.1007/s11858-023-01536-w

Cankoy, O., & Özder, H. (2017). Generalizability theory research on developing a scoring rubric to assess primary school students’ problem posing skills. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 2423–2439. https://doi.org/10.12973/eurasia.2017.01233a

Carrillo-Yañez, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, Á., Ribeiro, M., & Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236–253. https://doi.org/10.1080/14794802.2018.1479981

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson.

Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153

Einarsson, H., Lund, S. H., & Jónsdóttir, A. H. (2024). Application of ChatGPT for automated problem reframing across academic domains. Computers and Education: Artificial Intelligence, 6, 100194. https://doi.org/10.1016/j.caeai.2023.100194

Embid, S., & Perdomo-Díaz, J. (2024a). Herramientas digitales en la formulación de problemas de fracciones por futuros maestros de primaria. En N. Adamuz-Povedano, E. Fernández-Ahumada, N. Climent, & C. Jiménez-Gestal (Eds.), Investigación en Educación Matemática XXVII (pp. 201–208). SEIEM.

Embid, S., & Perdomo-Díaz, J. (2024b). Evaluación del potencial de distintos chatbots para la formulación de problemas matemáticos. Formación del Profesorado e Investigación en Educación Matemática, 16, 41–58.

Embid, S., Perdomo-Díaz, J., & Giaconi, V. (2024). Cuestionario ForPro-IA. OSF Storage. https://doi.org/10.17605/OSF.IO/Y45RW

Giaconi, V., Perdomo-Díaz, J., Cerda, G., & Saadati, F. (2018). Prácticas docentes, autoeficacia y valor en relación con la resolución de problemas de matemáticas: Diseño y validación de un cuestionario. Enseñanza de las Ciencias, 36(3). https://doi.org/10.5565/rev/ensciencias.2351

Grundmeier, T. A. (2015). Developing the problem-posing abilities of prospective elementary and middle school teachers. En F. M. Singer, N. F. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp. 411–431). Springer. https://doi.org/10.1007/978-1-4614-6258-3_20

Hernández, A., Perdomo-Díaz, J., & Camacho-Machín, M. (2019). Mathematical understanding in problem solving with GeoGebra: A case study in initial teacher education. International Journal of Mathematical Education in Science and Technology, 51(2), 208–223. https://doi.org/10.1080/0020739X.2019.1587022

Hwang, G.-J., & Tu, Y.-F. (2021). Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. Mathematics, 9(6), 584. https://doi.org/10.3390/math9060584

Jiménez Ávila, W. J., & Sosa Guerrero, L. (2024). Creencias y actuación en el aula de los formadores de profesores de matemáticas. Enseñanza de las Ciencias, 42(3), 185–202. https://doi.org/10.5565/rev/ensciencias.5985

Kilpatrick, J. (1987). Problem formulating: Where do good problems come from? En A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 123–147). Lawrence Erlbaum Associates.

Kuhail, M. A., Alturki, N., Alramlawi, S., & Alhejori, K. (2023). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28(1), 973–1018. https://doi.org/10.1007/s10639-022-11177-3

Leavy, A., & Hourigan, M. (2022). The Framework for Posing Elementary Mathematics Problems (F-PosE): Supporting teachers to evaluate and select problems for use in elementary mathematics. Educational Studies in Mathematics, 111(1), 147–176. https://doi.org/10.1007/s10649-022-10155-3

Lupiáñez, J. L., Olivares, D., & Segovia, I. (2024). Examining the role played by resources, goals and orientations in primary teachers’ decision-making for problem-solving lesson plans. ZDM – Mathematics Education, 56(6), 1153–1167.

Marbán, J. M., Palacios, A., & Maroto, A. (2020). Desarrollo del dominio afectivo matemático en la formación inicial de maestros de primaria. Avances de Investigación en Educación Matemática, 18, 73–86. https://doi.org/10.35763/aiem.v0i18.286

Martínez-Rizo, F. (2012). Procedimientos para el estudio sobre las prácticas docentes: Revisión de la literatura. RELIEVE – Revista Electrónica de Investigación y Evaluación Educativa, 18(1), 1–22.

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological Methods, 23(3), 412.

Montes, M., Chico, J., Martín-Díaz, J. P., & Badillo, E. (2024). Mathematics teachers’ specialized knowledge mobilized through problem transformation. The Journal of Mathematical Behavior, 73, 101132. https://doi.org/10.1016/j.jmathb.2024.101132

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. Author.

Noster, N., Gerber, S., & Siller, H.-S. (2024). Pre-service teachers’ approaches in solving mathematics tasks with ChatGPT. Digital Experiences in Mathematics Education, 10, 543–567. https://doi.org/10.1007/s40751-024-00155-8

Parra, V., Sureda, P., Corica, A., Schiaffino, S., & Godoy, D. (2024). Can generative AI solve geometry problems? Strengths and weaknesses of LLMs for geometric reasoning in Spanish. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 65. https://doi.org/10.9781/ijimai.2024.02.009

Rafi, I., & Sugiman, S. (2019). Problem posing ability among prospective mathematics teachers. Pythagoras: Jurnal Pendidikan Matematika, 14(2), 188–198. https://doi.org/10.21831/pg.v14i2.29976

Remillard, J. T., Reinke, L. T., & Kapoor, R. (2019). What is the point? Examining how curriculum materials articulate mathematical goals and how teachers steer instruction. International Journal of Educational Research, 93, 101–117. https://www.sciencedirect.com/science/article/pii/S0883035518305810

Reeve, J. (2015). Understanding motivation and emotion (6th ed.). Wiley.

Revelle, W. (2019). psych: Procedures for psychological, psychometric, and personality research [R package]. https://cran.r-project.org/package=psych

Richard, P. R., Vélez, M. P., & Van Vaerenbergh, S. (Eds.). (2022). Mathematics education in the age of artificial intelligence: How artificial intelligence can serve mathematical human learning. Springer.

https://doi.org/10.1007/978-3-030-86909-0

Rosseel, Y. (2018). lavaan: Latent variable analysis [R package].

https://cran.r-project.org/package=lavaan

Saadati, F., Cerda, G., Giaconi, V., Reyes, C., & Felmer, P. (2019). Modeling Chilean mathematics teachers’ instructional beliefs on problem solving practices. International Journal of Science and Mathematics Education, 17(5), 1009–1029. https://doi.org/10.1007/s10763-018-9897-8

Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303–324. https://doi.org/10.1007/s10649-020-09973-0

Schorcht, S., Buchholtz, N., & Baumanns, L. (2024). Prompt the problem – Investigating the mathematics educational quality of AI-supported problem solving by comparing prompt techniques. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1386075

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763. https://doi.org/10.1213/ANE.0000000000002864

Shultz, K. S., Whitney, D., & Zickar, M. J. (2020). Measurement theory in action: Case studies and exercises (3rd ed.). Routledge. https://doi.org/10.4324/9781003127536

Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28.

Son, J. W., & Diletti, J. (2017). What can we learn from textbook analysis? In J.-W. Son, T. Watanabe, & J.-J. Lo (Eds.), What matters? Research trends in international comparative studies in mathematics education (pp. 3–32). Springer. https://doi.org/10.1007/978-3-319-51187-0_1

Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem posing in school mathematics. Technology in Mathematics Education, 4(7), 518–525.

Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing? Educational Studies in Mathematics, 105(3), 487–517. https://doi.org/10.1007/s10649-020-10005-0

Wardat, Y., Tashtoush, M., Alali, R., & Saleh, S. (2024). Artificial intelligence in education: Mathematics teachers’ perspectives, practices and challenges. Iraqi Journal for Computer Science and Mathematics, 5(1), 60–77. https://doi.org/10.52866/ijcsm.2024.05.01.004

Descargas

Publicado

2025-10-30

Cómo citar

Embid Solano, S., Perdomo-Díaz, J., & Giaconi, V. (2025). Formulación de problemas y uso de IA: Creencias motivacionales en futuros docentes de primaria. Avances De Investigación En Educación Matemática, (28), 143–163. https://doi.org/10.35763/aiem28.7546

Datos de los fondos