Una exploración teórica: La Zona de Desarrollo Próximo como zona ética para enseñar matemáticas

Autores/as

  • Yasmine Abtahi University of South East Norway

DOI:

https://doi.org/10.35763/aiem20.4038

Palabras clave:

ZDP, poder, ética, responsabilidades, aprendizaje y enseñanza de matemáticas

Resumen

Durante décadas, la Zona de Desarrollo Próximo (ZDP) de Vygotsky se ha utilizado como un importante marco teórico para explorar y analizar el concepto de aprendizaje, pero sus implicaciones para el profesorado permanecen mucho menos exploradas. En este artículo, conceptualizo raíces de la teoría sociocultural del aprendizaje de Vygotsky y, a partir de aquí, exploro la ZDP como una zona ética y poderosa para la enseñanza. Junto con ofrecer una intensa descripción de aspectos claves de conceptos teóricos de Vygotsky, la principal pregunta enunciada, ¿Cuáles son las responsabilidades éticas del profesorado al guiar a los alumnos a hacer matemáticas que están más allá de sus habilidades independientes? pretende abrir una línea original de estudio. Empiezo con una perspectiva general de esta teoría del aprendizaje y de sus orígenes en el Marxismo mediante ejemplos de la investigación en educación matemática. Sigo con una discusión sobre cuestiones de ética y responsabilidad a fin de señalar más explícitamente las responsabilidades éticas y el poder del profesorado implícitas en el concepto de ZDP.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abtahi, Y. (in press). What if I was harmful? Reflecting on the ethical tensions associated with teaching the dominant mathematics. Educational Studies in Mathematics.

Abtahi, Y. (2016). Things kids think with: The role of physical properties of the mathematical tools in children’s learning (of the addition of fractions). University of Ottawa Publishing. 1-201. https://ruor.uottawa.ca/bitstream/10393/35265/1/Abtahi_Yasaman_2016_Thesis.pdf

Abtahi, Y. (2017a). The ‘more knowledgeable other’: A necessity in the zone of proximal development? For the Learning of Mathematics. 37(1), 20-24. https://doi.org/10.1080/14794802.2017.1390691

Abtahi. Y. (2017b). Children, tools and the zone of proximal development. Research in Mathematics Education, 20(1), 1-13. https://doi.org/10.1080/14794802.2017.1390691

Abtahi, Y., Graven, M., & Lerman, S. (2017). Conceptualising the more knowledgeable other within a multi-directional ZPD. Educational Studies in Mathematics, 96, 275-287. https://doi.org/10.1007/s10649-017-9768-1

Atweh, B., & Brady, K. (2009). Socially response-able mathematics education: Implications of an ethical approach. Eurasia Journal of Mathematics, Science & Technology Education, 5(3), 267-276. https://doi.org/10.12973/ejmste/75278

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective. In L. D. English, & D. Kirshner (eds.), Handbook of international research in mathematics education (pp. 746-783). Routledge.

Boylan, M. (2016). Ethical dimensions of mathematics education. Educational Studies in Mathematics, 92, 395-409. https://doi.org/10.1007/s10649-015-9678-z

Burbules, N. C., & Warnick, B. R. (2006). Phylosophical inquiry. In J. L. Green, G. Camilli, & P. B. Elmore (eds.), Handbook of complementary methods in education research (pp. 489-502). Routledge.

Civil, M., & Planas, N. (2004). Participation in the mathematics classroom: Does every student have a voice? For the Learning of Mathematics, 24(1), 7-12.

Cole, M., John-Steiner, V., Scribner, S., & Souberman, E. (1978). Biographical note on L. S. Vygotsky. Mind in society the development of higher psychological processes (pp. 1-15). Harvard University Press.

D’Ambrosio, U. (2010). Mathematics education and survival with dignity. In H. Alrø, P. Valero, & O. Ravn (Eds.), Critical mathematics education: Past, present and future (pp. 51-63). Brill/Sense. https://doi.org/10.1163/9789460911644_006

Empson, S. B. (1999). Equal sharing and shared meaning: The development of fraction concepts in a first-grade classroom. Cognition and Instruction, 17(3), 283-342. https://doi.org/10.1207/S1532690XCI1703_3

Engeström, Y. (2009). The future of activity theory: A rough draft. In A. Sannino, H. Daniels, & K. D. Gutiérrez (eds.), Learning and expanding with activity theory (pp. 303-328). Cambridge University Press. https://doi.org/10.1017/CBO9780511809989.020

Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49, 193-223. https://doi.org/10.1023/A:1016209010120

Lerman, S. (2013). Learning and knowing mathematics. In P. Andrews, & T. Rowland (eds), Masterclass in mathematics education: International perspectives on teaching and learning (pp. 15-26). Bloomsbury. https://doi.org/10.5040/9781350284807.ch-002

Lerman, S. & Meira, L. (2001). The zone of proximal development as a symbolic space. South Bank University, Faculty of Humanities and Social Science.

Marx, K., & Engels, F. (1988). Economic and philosophic manuscripts of 1844 and the Communist Manifesto [Trans. M. Milligan]. Prometheus. (Original work published 1930)

Planas, N., & Civil, M. (2009). Working with mathematics teachers and immigrant students: An empowerment perspective. Journal of Mathematics Teacher Education, 12(6), 391-409. https://doi.org/10.1007/s10857-009-9116-1

Ricœur, J. P. G. (1973). Ethics and culture. Philosophy Today, 17(2), 153-165. https://doi.org/10.5840/philtoday197317235

Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. Oxford University Press.

Rorty, R. (2009). Philosophy and the mirror of nature. Princeton University Press. https://doi.org/10.1515/9781400833061

Roth, W.-M. (2007). Solidarity and the ethics of collaborative research. In S. Ritchie (ed.), Research collaboration: Relationships and praxis (pp. 27-42). Sense Publishers. https://doi.org/10.1163/9789087903138_004

Roth, W.-M. (2013). Toward a post-constructivist ethics in/of teaching and learning. Pedagogies. An International Journal, 8(2), 103-125. https://doi.org/10.1080/1554480X.2013.767769

Roth, W.-M. (2018). A transactional approach to research ethics. Forum: Qualitative Social Research, 19(3), 100-112

Roth, W.-M., & Radford, L. (2010). Re/thinking the zone of proximal development (symmetrically). Mind, Culture and Activity, 17(4), 299-307. https://doi.org/10.1080/10749031003775038

Van Oers, B. (1996). Learning mathematics as a meaningful activity. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (eds.), Theories of mathematical learning (pp. 91-113). Routledge.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes [Eds. M. Cole, V. John-Steiner, S. Scribner, & E. Souberman]. Harvard University Press.

Walshaw, M. (2017). Understanding mathematical development through Vygotsky. Research in Mathematics Education, 19(3), 293-309. https://doi.org/10.1080/14794802.2017.1379728

Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Harvard University Press.

Yasnitsky, A., & Van der Veer, R. (eds.) (2015). Revisionist revolution in Vygotsky studies: The state of the art. Routledge. https://doi.org/10.4324/9781315714240

Descargas

Publicado

2021-10-25

Cómo citar

Abtahi, Y. (2021). Una exploración teórica: La Zona de Desarrollo Próximo como zona ética para enseñar matemáticas. Avances De Investigación En Educación Matemática, (20), 7–21. https://doi.org/10.35763/aiem20.4038

Número

Sección

Artículos