Estudiantes con y sin fracaso en matemáticas: análisis de variables cognitivas y afectivas implicadas

Autores/as

DOI:

https://doi.org/10.35763/aiem26.5271

Palabras clave:

Autorregulación del aprendizaje, Autoeficacia, Competencia percibida, Expectativas de logro, Rendimiento en matemática

Resumen

Aunque la matemática es crucial en la formación educativa, el desempeño es bajo en estudiantes de Latinoamérica, siendo relevante analizar factores que inciden en el éxito-fracaso disciplinar. Este estudio analiza efectos funcionales de ansiedad matemática, autorregulación del aprendizaje, autoeficacia, competencia percibida y expectativas de logro en matemática entre estudiantes con y sin historial de fracaso en la asignatura, con el objetivo de identificar efectos predictivos de dichas variables sobre la experiencia de éxito o fracaso. Mediante un diseño transversal predictivo, se evaluó a 577 estudiantes colombianos de secundaria aplicando análisis comparativo, relacional y regresión logística binaria. El fracaso en matemáticas fue predicho por hábitos inadecuados de regulación, baja competencia percibida y poca expectativa de logro. Los resultados respaldan la importancia de enseñar matemáticas con estrategias que fomenten autorregulación del aprendizaje y emociones positivas, las cuales buscan generar cogniciones favorables que redunden en la confianza estudiantil en su capacidad matemática.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aragón, E., Delgado, C., & Marchena, E. (2017). Diferencias de aprendizaje matemá-tico entre los métodos de enseñanza CBC. Psychology, Society & Education, 9(1), 61-70. https://doi.org/gh45

Ato, J., López, M., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de psicología, 29(3), 1038-1059. https://doi.org/chxj

Ávila-Toscano, J., Rojas-Sandoval, Y., & Tovar-Ortega, T. (2020). Perfil del domi-nio afectivo en futuros maestros de matemáticas. Revista de Psicología y Educa-ción, 15(2), 225-236. https://doi.org/ktcd

Bandura, A. (2012). On the functional properties of perceived self-efficacy revisited. Journal of Management, 38(1), 9-44. https://doi.org/dtx4jh

Barroso, C., Ganley, C., McGraw, A., Geer, E., Hart, S., & Daucourt, M. (2021). A me-ta-analysis of the relation between math anxiety and math achieve-ment. Psychological Bulletin, 147(2), 134-168. https://doi.org/gm5s9z

Bergkvist, L. (2015). Appropriate use of single-item measures is here to stay. Mar-keting Letters, 26(3), 245-255. https://doi.org/dfgq

Caycho-Rodríguez, T., Rojas-Jara, C., Ventura-León, J., Noe-Grijalva, M., Cabrera-Orosco, I., & Reyes-Bossio, M. (2021). Ítem único para valorar la preocupación por el cáncer: evidencias iniciales de validez y confiabilidad. Enfermería Clíni-ca, 31(4), 203-210. https://doi.org/ktcg

Cho, M-H., & Heron, M. (2015). Self-regulated learning: the role of motivation, emotion, and use of learning strategies in students’ learning experiences in a self-paced online mathematics course. Distance Education, 36(1), 80-99. https://doi.org/gfj8nz

Cleary, T., & Zimmerman, B. (2012). A cyclical self-regulatory account of student engagement: Theoretical foundations and applications. In S. Christenson, A. Reschly & C. Wylie (Eds.), Handbook of research on student engagement (pp. 237-257). Springer + Business Media. https://doi.org/ktcj

Dowker, A., Sarkar, A., & Looi, C. (2016). Mathematics Anxiety: What have we learned in 60 years? Frontiers in Psychology, 7. https://doi.org/gkdf87

Dündar, S., Güvendir, M., Kocabiyik, O., & Papatga, E. (2014). Which elementary school subjects are the most likeable, most important, and the easiest? Why?: A study of science and technology, mathematics, social studies, and Turkish. Educational Research and Reviews, 9(13). https://doi.org/ktck

Else-Quest, N., Hyde, J., & Linn, M. (20210). Cross-national patterns of gender dif-ferences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053

Fernández-Cézar, R., Solano-Pinto, N., & Garrido, D. (2021). Can mathematics achievement be predicted? The Role of cognitive–behavioral–emotional vari-ables. Mathematics, 9(14), 1591. https://doi.org/ktcm

Gabriel, F., Buckley, S., & Barthakur, A. (2020). The impact of mathematics anxiety on self-regulated learning and mathematical literacy. Australian Journal of Ed-ucation, 64(3), 227-242. https://doi.org/gqx237

González, C., Caso, J., Díaz, K., & López, M. (2012). Rendimiento académico y facto-res asociados. Aportaciones de algunas evaluaciones a gran escala. Bordón, 64(2), 51-68. https://cutt.ly/eBe0M4k

Hederich-Martínez, C., & Caballero-Domínguez, C. (2016). Validación del cuestio-nario Maslach Burnout Inventory-Student Survey (MBI-SS) en contexto aca-démico colombiano. CES Psicología, 9(1), 1-15. http://www.scielo.org.co/scielo.php?pid=S2011-30802016000100002&script=sci_abstract&tlng=es

Hernández, A., & Camargo, A. (2017). Adaptación y validación del Inventario de Es-trategias de Autorregulación en estudiantes universitarios. Suma Psicológica, 24, 9-16. https://doi.org/ktcq

Hernández, M., Eisenberg, N., Valiente, C., Spinrad, T., Johns, S., Berger, R., Silva, K., Diaz, A., Gal-Szabo, D., Thompson, M., & Southworth, J. (2018). Self-regulation and academic measures across the early elementary school grades: Examining longitudinal and bidirectional associations. Early Education and Development, 29(7), 914-938. https://doi.org/gmhj2r

Hernández-Nieto, R. (2002). Contributions to Statistical Analysis: The coefficients of proportional variance, content validity and Kappa. Universidad de Los Andes.

Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on aca-demic performance: A systematic review. Educational Research Review, 17, 63-84. https://doi.org/gd6ft9

Hopko, D., Mahadevan, R., Bare, R., & Hunt, M. (2003). The Abbreviated Math Anxi-ety Scale (AMAS): construction, validity, and reliability. Assessment, 10(2), 178-182. https://doi.org/cpf96t

IBM Corp. (2015). IBM SPSS Statistics for Windows, Version 23.0. IBM Corp.

Ingram, N., Hatisaru, V., Grootenboer, P., & Beswick, K. (2020). Researching the affective domain in mathematics education. En J. Way., C. Attard., J. Ander-son., J. Bobis., H. McMaster., & K. Cartwright (Eds.), Research in Mathematics Education in Australasia 2016–2019 (pp. 147-176). Springer. https://doi.org/ktcr

Johnson, E., Clohessy, A., & Chakravarthy, P. (2020). A self-regulated learner framework for students with learning disabilities and math anxiety. Interven-tion in School and Clinic, 56(3), 163-171. https://doi.org/gjk822

Kamakura, W. A. (2015). Measure twice and cut once: The carpenter’s rule still ap-plies. Marketing Letters: A Journal of Research in Marketing, 26(3), 237-243. https://doi.org/10.1007/s11002-014-9298-x

Klassen, R., & Usher, E. (2010). Self-efficacy in educational settings: Recent re-search and emerging directions. In T. Urdan & S. Karabenick (Ed.), The Decade Ahead: Theoretical Perspectives on Motivation and Achievement (Advances in Mo-tivation and Achievement, 16 Part A) (pp. 1-33). Emerald Group Publishing Lim-ited. https://doi.org/cnwgdx

Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and math-ematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS One, 10(6), e0130570. https://doi.org/gh45jw

Luttenberger, S., Wimmer, S., & Paechter, M. (2019). Spotlight on math anxiety. Psychology Research and Behavior Management, 11, 311-322. https://doi.org/gd4jcm

McIntee, S., Goulet-Pelletier, J., Williot, A., Deck-Léger, E., Lalande, D., Cantinotti, M., & Cousineau, D. (2022). (Mal)adaptive cognitions as predictors of statis-tics anxiety. Statistics Education Research Journal, 21(1), 1-18. https://doi.org/ktcs

McKinnon, R., & Blair, C. (2019). Bidirectional relations among executive function, teacher–child relationships, and early reading and math achievement: A cross-lagged panel analysis. Early Childhood Research Quarterly, 46, 152-165. https://doi.org/fmx4

Ministerio de Educación Nacional de Colombia [MEN] (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Autor.

Morsanyi, K., Ní Cheallaigh, N., & Ackerman, R. (2019). Mathematics anxiety and metacognitive processes: Proposal for a new line of inquiry. Psychological Top-ics, 28(1), 147-169. https://doi.org/ktcv

Mutlu, Y. (2019). Math anxiety in students with and without math learning difficul-ties. International Electronic Journal of Elementary Education, 11(5), 471-475. https://doi.org/fjj2

Onwezen, M., Reinders, M., Verain, M., & Snoek, H. (2019). The development of a single-item Food Choice Questionnaire. Food Quality and Prefererence 71, 34-45. https://doi.org/gmv5j6

Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura [UNESCO] (2019). Resultados de logros de aprendizaje y factores asociados del Es-tudio Regional Comparativo y Explicativo ERCE 2019. Autor. https://cutt.ly/cBqlf9e

Organization for Economic Cooperation and Development [OECD] (2013). PISA 2012 Results: Ready to Learn (Volume III): Students’ engagement, drive and self-beliefs. Autor. https://doi.org/gppqp2

Panadero, E. (2017). A review of self-regulated learning: Six models and four direc-tions for research. Frontiers in Psychology, 8, 422. https://doi.org/gf4n8k

Pedrosa, I., Suárez-Álvarez., J., & García-Cueto, E. (2013). Evidencias sobre la vali-dez de contenido: avances teóricos y métodos para su estimación Acción Psico-lógica, 10(2), 3-20. https://doi.org/cbtn

Peixoto, F., Sanches, C., Mata, L., & Monteiro, V. (2016). ”How do you feel about math?”: relationships between competence and value appraisals, achieve-ment emotions and academic achievement. European Journal of Psychology of Education, 32(3), 385-405. https://doi.org/gqkwpb

Prada, R., Suárez, C., Solano-Pinto, N., & Fernández-Cézar, R. (2023). Predictor variables of academic success in mathematics under a binary logistic regres-sion model. Journal of Positive Psychology and Wellbeing, 7(1), 551-575. https://n9.cl/10gw6

Prast, E., Van de Weijer-Bergsma, E., Miočević, M., Kroesbergen, E., & Van Luit, J. (2018). Relations between mathematics achievement and motivation in stu-dents of diverse achievement levels. Contemporary Educational Psychology, 55, 84-96. https://doi.org/ktcx

Ramirez, G., Shaw, S., & Maloney, E. (2018). Math anxiety: past research, promising interventions, and a new interpretation framework. Educational Psychologist, 53(3), 145-164. https://doi.org/dxjg

Rosário, P., Lourenço, A., Paiva, O., Núnez, J., González-Pienda, J., & Valle, A. (2012). Autoeficacia y utilidad percibida como condiciones necesarias para un aprendizaje académico autorregulado. Anales de Psicología, 28(1), 37-44. https://cutt.ly/cBuh058

Rosário, P., Lourenco, A., Paiva, O., Rodríguez, A., Valle, A., & Tuero-Herrero, E. (2012). Predicción del rendimiento en matemáticas: efecto de variables perso-nales, socioeducativas y del contexto escolar. Psicothema, 24(2), 289-295. https://cutt.ly/HVuaxLv

Rosário, P., Núñez, J., Valle, A., González-Pienda, J., & Lourenço, A. (2013). Grade level, study time, and grade retention and their effects on motivation, self-regulated learning strategies, and mathematics achievement: a structural equation model. European Journal of Psychology of Education, 28, 1311-1331. https://doi.org/fv85

Rosário, P., Pereira, A., Högemann, J., Nunes, A., Figueiredo, M., Núñez, J., Fuentes, S., & Gaeta, M. (2014). Autorregulación del aprendizaje: una revisión sistemá-tica en revistas de la base SciELO. Universitas Psychologica, 13(2), 781-798. https://doi.org/ktcz

Ten Braak, D., Størksen, I., Idsoe, T., & McClelland, M. (2019). Bidirectionality in self-regulation and academic skills in play-based early childhood education. Journal of Applied Developmental Psychology, 65, 101064. https://doi.org/ggdnrd

Wanous, J., & Hudy, M. (2001). Single-Item reliability: A replication and extension. Organizational Research Methods, 4(4), 361-375. https://doi.org/fqxg5v

Wanous, J., Reichers A., & Hudy, M. (1997). Overall job satisfaction: How good are single-item measures? Journal of Applied Psychology, 82(2), 247-252. https://doi.org/fgjq9z

Zakariya, Y., Barattucci, M., Fernández-Cézar, R., & Solano-Pinto, N. (2022). Anal-ysis of relations between attitude towards mathematics, prior knowledge, self-efficacy, expected and actual grades in mathematics. Twelfth Congress of the European Society for Research in Mathematics Education (CERME12), Feb 2022, Bozen-Bolzano, Italy.

Zimmerman, B. (2000). Attaining self-regulation: A social cognitive perspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13–39). Academic Press.

Descargas

Publicado

2024-10-31

Cómo citar

Ávila-Toscano, J. H., Vargas-Delgado, L. J. ., Tovar-Ortega, T., & Hernández-Chang, E. A. (2024). Estudiantes con y sin fracaso en matemáticas: análisis de variables cognitivas y afectivas implicadas. Avances De Investigación En Educación Matemática, (26), 147–163. https://doi.org/10.35763/aiem26.5271

Número

Sección

Artículos