Conexiones matemáticas asociadas al concepto vector en un texto de secundaria de la Nueva Escuela Mexicana

Autores/as

DOI:

https://doi.org/10.35763/aiem25.6442

Palabras clave:

Análisis de texto, Conexiones matemáticas, Vector, Física, Matemáticas

Resumen

La matemática es un universo de conexiones entre conceptos, teoremas y procedimientos e, incluso, se conciben como características de la disciplina conexiones no solo internas sino con otras disciplinas. Dichas conexiones matemáticas juegan un papel fundamental para la comprensión de conceptos, por lo que es necesario promoverlas en los materiales curriculares. Esta investigación tiene como objetivo analizar las conexiones matemáticas que se fomentan sobre el concepto vector en el libro Saberes y Pensamiento Científico en educación secundaria de la Nueva Escuela Mexicana, con base en tres categorías: temas unificadores, procesos y conectores matemáticos. Se considera que las conexiones matemáticas son relaciones entre ideas matemáticas, y son una característica propia de la matemática. Metodológicamente se hizo uso del análisis cualitativo de texto. Los resultados muestran que los temas unificadores, los procesos y los conectores matemáticos son agentes de comprensión y promueven conexiones entre el conocimiento conceptual y procedimental del concepto vector.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Viana Nallely García-Salmerón, Universidad Autónoma de Guerrero

Professor of the Bachelor's Degree in Educational Mathematics at the Autonomous University of Guerrero. C. PhD in Sciences with a specialty in Educational Mathematics from the Autonomous University of Guerrero.

Citas

Alsina, A., & Coronata, C. (2014). Los procesos matemáticos en las prácticas docentes: diseño, construcción y validación de un instrumento de evaluación. Edma 0-6: Educación Matemática en la Infancia, 3(2), 23-36. https://doi.org/10.24197/edmain.2.2014.23-36

Barniol, P., & Zavala, G. (2014a). Evaluación del entendimiento de los estudiantes en la representación vectorial utilizando un test con opciones múltiples en español. Revista mexicana de física E, 60(2), 86-102.

Barniol, P., & Zavala, G. (2014b). Force, velocity, and work: The effects of different contexts on students’ understanding of vector concepts using isomorphic problems. Physical Review Special Topics-Physics Education Research, 10(2), 1-15. https://doi.org/10.1103/PhysRevSTPER.10.020115

Berisha, V., Thaçi, X., Jashari, H., & Klinaku, S. (2013). Assessment of mathematics textbooks potential in terms of student’s motivation and comprehension. Journal of Education and Practice, 4(28), 33-37.

Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Tesis Doctoral publicada]. Universidad Simon Fraser. https://bac-lac.on.worldcat.org/oclc/755208445

Carli, M., Lippiello, S., Pantano, O., Perona, M., & Tormen, G. (2020). Testing students ability to use derivatives, integrals, and vectors in a purely mathematical context and in a physical context. Physical Review Physics Education Research, 16(1). https://doi.org/10.1103/PhysRevPhysEducRes.16.010111

Coxford, A. F. (1995). The case for connections. In P. A. House & A. F. Coxford (Eds.), Connecting mathematics across the curriculum (pp. 3-12). National Council of Teachers of Mathematics.

Fan, L. (2013). Textbook research as scientific research: Towards a common ground on issues and methods of research on mathematics textbooks. ZDM–The International Journal on Mathematics Education, 45(5), 765-777. https://doi.org/10.1007/s11858-013-0530-6

Flores-García, S., Gonzalez-Quezada, M., & Herrera-Chew, A. (2007). Dificultades de entendimiento en el uso de vectores en cursos introductorios de mecánica. Revista Mexicana de Física E, 53(2), 178-185.

Gacovska-Barandovska, A., Celakoska-Jordanova, V., & Celakoska, E. (2020). Analyzing educational objectives that include critical thinking: Dot product problems in Vector Algebra. International Journal on Studies in Education, 2(2), 108-118. https://doi.org/10.46328/ijonse.16

García-García, J., Hernández-Yañez, M. E., & Rivera-López, M. I. (2022). Conexiones matemáticas promovidas en los planes y programas de estudio mexicanos de nivel secundaria y media superior sobre el concepto de ecuación cuadrática. IE Revista de Investigación Educativa de la REDIECH, 13. https://doi.org/10.33010/ie_rie_rediech.v13i0.1485

Hadar, L. L., & Ruby, T. L. (2019). Cognitive opportunities in textbooks: the cases of grade four and eight textbooks in Israel. Mathematical Thinking and Learning, 21(1), 54-77. https://doi.org/10.1080/10986065.2019.1564968

Haji, S., & Yumiati (2019). NCTM’s Principles and standards for developing conceptual understanding in Mathematics. Journal of Research in Mathematics Trends and Technology, 1(2), 56-65. https://doi.org/10.32734/jormtt.v1i2.2836

Harel, G. (2021). The learning and teaching of multivariable calculus: a DNR perspective. ZDM–Mathematics Education, 53(3), 709-721. https://doi.org/10.1007/s11858-021-01223-8

Heckler, A., & Scaife, T. (2015). Adding and subtracting vectors: The problem with the arrow representation. Physical Review Special Topics-Physics Education Research, 11(1), 1-17. https://doi.org/10.1103/PhysRevSTPER.11.010101

Knight, R. (1995). The vector knowledge of beginning physics students. The Physics Teacher, 33(2), 74-77. https://doi.org/10.1119/1.2344143

Kuckartz, U. (2019) Qualitative text analysis. A systematic approach. In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 181-197). Springer. https://doi.org/10.1007/978-3-030-15636-7

Latifa, B. R. A., Purwaningsih, E., & Sutopo, S. (2021). Identification of students’ difficulties in understanding of vector concepts using test of understanding of vector. Journal of Physics: Conference Series, 2098(1), 1-5. https://doi.org/10.1088/1742-6596/2098/1/012018

Mikula, B. D., & Heckler, A. F. (2017). Framework and implementation for improving physics essential skills via computer-based practice: Vector math. Physical Review Physics Education Research, 13(1), 1-23. https://doi.org/10.1103/PhysRevPhysEducRes.13.010122

National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. Autor.

Neuman, J., Hemmi, K., Ryve, A., & Wiberg, M. (2014, junio). Mathematics textbooks’ impact on classroom instruction: Examining the views of 278 Swedish teachers. Proceedings of the Seventh Nordic Conference on Mathematics Education, NORMA 14, 3-6 June 2014, Turku (Åbo), Finland.

Otero, M. R., Moreira, M. A., & Greca, I. M. (2002). El uso de imágenes en textos de física para la enseñanza secundaria y universitaria. Investigações em Ensino de Ciências, 7(2), 127-154.

Pincheira, N., & Alsina, Á. (2021). Explorando la demanda cognitiva de tareas matemáticas de búsqueda de patrones diseñadas por futuros profesores de Educación Primaria. En P. D. Diago, D. F. Yáñez, M. T. González-Astudillo & D. Carrillo (Eds.), Investigación en Educación Matemática XXIV (pp. 489-496). SEIEM.

Posner, G. (1998). Análisis de currículum (2da. Edición). McGraw-Hill Interamericana, S.A.

Rezat, S., & Strässer, R. (2014). Mathematics textbooks and how they are used. In P. Andrews, & T. Rowland (Eds.), Master class in mathematics education: International perspectives on teaching and learning (pp. 51-62). Bloomsbury. https://doi.org/10.5040/9781350284807.ch-005

Schubring, G., & Fan, L. (2018). Recent advances in mathematics textbook research and development: An overview. ZDM Mathematics Education, 50(5), 765-771. https://doi.org/10.1007/s11858-018-0979-4

Secretaría de Educación Pública [SEP] (2022). Avance del contenido del Programa sintético de la Fase 6. https://educacionbasica.sep.gob.mx/wp-content/uploads/2022/12/Avance-Programa-Sintetico-Fase-6.pdf

Secretaría de Educación Pública [SEP] (2023a). Plan de estudios para la educación preescolar, primaria y secundaria. https://educacionbasica.sep.gob.mx/wp-content/uploads/2023/07/Plan_de_Estudios_para_la_Educacion_Preescolar_Primaria_y_Secundaria.pdf

Secretaría de Educación Pública [SEP] (2023b). Saberes y pensamiento científico. Autor. https://www.conaliteg.sep.gob.mx/2023/S2SAA.htm#page/1

Shield, M., & Dole, S. (2013). Assessing the potential of mathematics textbooks to promote deep learning. Educational studies in mathematics, 82, 183-199. https://doi.org/10.1007/s10649-012-9415-9

Shodiqin, M., & Taqwa, M. (2021). Identification of student difficulties in understanding kinematics: focus of study on the topic of acceleration. Journal of Physics: Conference Series, 1918(2), pp. 1-5). https://doi.org/10.1088/1742-6596/1918/2/022016

Sierpinska, A., Dreyfus, T., & Hillel, J. (1999). Evaluation of a teaching design in linear algebra: the case of linear transformations. Recherches en Didactique des Mathématiques 19, (1), 7-40.

Sievert, H., van den Ham, A. K., Niedermeyer, I., & Heinze, A. (2019). Effects of mathematics textbooks on the development of primary school children’s adaptive expertise in arithmetic. Learning and Individual Differences, 74, 1-13. https://doi.org/10.1016/j.lindif.2019.02.006

Slisko, J. (2005). Errores en los libros de texto de física: ¿cuáles son y por qué persisten tanto tiempo? Sinéctica, Revista Electrónica de Educación, 27, 13-23.

Subsecretaría de Educación Media Superior [SEMS] (2023). La Nueva Escuela Mexicana (NEM): orientaciones para padres y comunidad en general. Autor.

Tairab, H., Al Arabi, K., Rabbani, L., & Hamad, S. (2020). Examining Grade 11 science students’ difficulties in learning about vector operations. Physics Education, 55(5). https://doi.org/10.1088/1361-6552/aba107

Toh, T. L., & Choy, B. H. (Eds.) (2021). Mathematics-Connection and Beyond. Yearbook 2020. Association of Mathematics Educators. World Scientific. https://doi.org/10.1142/12279

Weinberg, S. L. (2001). Is there a connection between fractions and division? Students’ inconsistent responses. Annual Meeting of the American Educational Research Association. https://files.eric.ed.gov/fulltext/ED456045.pdf

Descargas

Publicado

2024-04-30

Cómo citar

Rodríguez Vásquez, F. M., García-Salmerón, V. N. ., & Romero Valencia, J. . (2024). Conexiones matemáticas asociadas al concepto vector en un texto de secundaria de la Nueva Escuela Mexicana. Avances De Investigación En Educación Matemática, (25), 151–173. https://doi.org/10.35763/aiem25.6442