Obstacles and Difficulties of Students in Incorporating Integer Numbers
DOI:
https://doi.org/10.35763/aiem26.4725Keywords:
NumbersLearning, Epistemological obstacles, Didactic obstacles, Learning difficultiesAbstract
The incorporation of wholes numbers in the teaching of mathematics supposes a break with the number representation built from natural numbers and implies a profound change in the students’ mathematical thinking. This research studies the incorporation of wholes numbers in teaching, analyzing the responses of 266 students from 6th grade of Primary and 1st grade of Secondary to a questionnaire in which they must identify and interpret two types of situations (state and additive) expressed in three dimensions (abstract, straight and contextual) and transfers between dimensions. Based on the results, it is conjectured the persistence of the epistemological obstacle of the number as an expression of quantity, the difficulties to differentiate the different meanings of the minus sign and the didactic obstacles of a frequently decontextualized teaching that gives priority to operational calculus and relegates the straight line numeric.
Downloads
References
Bachelard, G. (2011). La formación del espíritu científico. Contribución a un psicoanálisis del conocimiento objetivo (27ª reimpresión). Siglo XXI Editores.
Bishop, J.P., Lamb, L., Philipp, R., Schappelle, B., & Whitacre, I. (2010). A develop-ing framework for children’s reasoning about integers. Proceedings of the 32th Annual Meeting of PME-NA (Vol. 6, 695-702).
Bishop, J.P., Lamb, L.L., Philipp, R.A., Whitacre, I., Schappelle, B.P., & Lewis, M.L. (2014). Obstacles and affordances for integer reasoning: An analysis of chil-dren’s thinking and the history of mathematics. Journal for Research in Mathe-matics Education, 45(1), 19-61. https://doi.org/10.5951/jresematheduc.45.1.0019
Bofferding, L. (2014). Negative integer understanding: Characterizing first graders’ mental models. Journal for Research in Mathematics Education, 45(2), 194-245. https://doi.org/10.5951/jresematheduc.45.2.0194
Brousseau, G. (1989). Les obstacles épistémologiques et la didactique des mathé-matiques. En N. Bednarz & C. Garnier (Eds.), Construction des Savoirs Obstacles et Conflits (pp. 41-63). CIRADE Les éditions Agence d’Arc inc.
Bruno, A. (1997). La enseñanza de los números negativos: aportaciones de una in-vestigación. Números, 29, 5-18.
Bruno, A. (2000). Los alumnos redactan problemas aditivos de números negativos. Revista EMA, 5(3), 236-251.
Bruno, A. (2001). La enseñanza de los números negativos: formalismo y significado. Gaceta de la Real Sociedad Matemática Española, 4(2), 415-427.
Bruno, A. (2009). Metodología de una investigación sobre métodos de enseñanza de problemas aditivos con números negativos. PNA. Revista de Investigación en Di-dáctica de la Matemática, 3(2), 87-103.
Bruno, A., & Cabrera, N. (2005). Una experiencia sobre la representación en la recta de números negativos. Quadrante, 14(2), 25-41. https://doi.org/10.48489/quadrante.22797
Bruno, A., & Martinón, A. (1994). La recta en el aprendizaje de los números negati-vos. Suma, 18, 39-48.
Bruno, A., & Martinón, A. (1997). Procedimientos de resolución de problemas aditi-vos con números negativos. Enseñanza de las Ciencias, 15(2), 249-258. https://doi.org/10.5565/rev/ensciencias.4180
Cid, E. (2003). La investigación didáctica sobre los números negativos: estado de la cuestión. Pre-publicaciones del Seminario Matemático García de Galeano, 25, 1-40.
Cid, E. (2016). Obstáculos epistemológicos en la enseñanza de los números enteros (Te-sis doctoral inédita). Universidad de Zaragoza.
Coquin-Viennot, D. (1985). Complexité mathématique et ordre d’acquisition: une hiérarchie de conceptions à propos des relatifs. Recherches en Didactique des Mathématiques, 6(2,3), 133-192.
Freudenthal, H. (1973). Mathematics as an educational task. D. Reidel.
Gallardo, A. & Mejía, J. (2015). Los números negativos ¿constituyen un obstáculo epistemológico persistente? En R. Flores (Ed.), Acta Latinoamericana de Mate-mática Educativa 28 (pp. 190-197). Comité Latinoamericano de Matemática Educativa.
Gallardo, A., & Rojano, T. (1994). School algebra. Syntactic difficulties in the opera-tivity. Proceedings of the Sixteenth International Conference for the Psychology of Mathematics Education, pp. 265-272.
Glaeser, G. (1981), Epistémologie des nombres relatifs. Recherches en Didactique des Mathématiques, 2(3), 303-346.
Gobin, C., Guichard, J.P., Marot, M., Moinier, F., Riffet, D., Robin, C., & Rodríguez, F. (1996). Les nombres relatifs au collège, IREM de Poitiers.
González, J. L., Iriarte, D. M., Jimeno, M., Ortiz, A., Sanz, E., & Vargas-Machuca, I. (1990). Números Enteros. Matemáticas: cultura y aprendizaje (Vol. 6). Editorial Síntesis
Hankel, H. (1867). Vorlesungen über die complexen zahlen und ihrefunctionen. Leopold Voss.
Heller, J. I., & Greeno, J. G. (1979). Information processing analyses of mathemati-cal problem solving. Testing, teaching and learning. National Institute of Educa-tion.
Herrera, E. E. (2021). Implementación de herramienta m-learning para el aprendi-zaje de adición de números enteros en tiempos de pandemia. Revista Universi-dad y Sociedad, 13(6), 99-108.
Herrera, J. L., & Zapatera, A. (2019). El número como cantidad física y concreta, un obstáculo en el aprendizaje de los números enteros. PNA: Revista de Investiga-ción en Didáctica de la Matemática, 13(4), 197-220. https://doi.org/10.30827/pna.v13i4.8226
Iriarte, M. D., Jimeno, M., & Vargas-Machuca, I. (1991). Obstáculos en el aprendiza-je de los números enteros. SUMA, 7, 13-18.
Janvier, C. (1983). The understanding of directed numbers. In Proceedings of the Fifth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 2 (pp. 295-301).
Liebeck, P. (1990). Scores and Forfeits - An Intuitive Model for Integer Arithmetic. Educational Studies in Mathematics, 21(3), 221-239.
Nesher, P. (1982). Levels of Description in the Analysis of Addition and Subtraction Word Problems. En T.P. Carpenter, J.M. Moser & T.A. Romberg (Eds.), Addition and Subtraction: a Cognitive Perspective, (pp. 25-38). Lawrence Erlbaum.
Peled, I., Mukhopadahyay, S., & Resnick, L.B. (1989). Formal and informal sources of mental models for negative numbers. Proceedings of the XIII PME, pp. 106-110.
Piaget, J. (1978). La equilibración de las estructuras cognitivas: problema central del desarrollo. Siglo XXI.
Schubring, G. (2007). Um Outro Caso de Obstáculos Epistemológicos: o princípio de permanência. Boletim de Educação Matemática, 20(28), 1-20.
Vergnaud, G. (1982). A Classification of Cognitive Tasks and Operation of Thought Involved in Additions and Subtraction Problems. En T.P. Carpenter, J.M. Moser & T.A. Romberg (Eds.), Addition and Subtraction: a Cognitive Perspective (pp. 39-59). Lawrence Erlbaum.
Vlassis, J. (2008). The role of mathematical symbols in the development of number conceptualization: The case of the minus sign. Philosophical Psychology, 21(4), 555-570. https://doi.org/10.1080/09515080802285552
Zapatera, A. (2021). Obstáculos epistemológicos en el aprendizaje de los números enteros. En A. Rojas (Ed.), Avances en Matemática Educativa. Teorías diversas, 8, 121-135.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alberto Zapatera Llinares, Eduardo Quevedo Gutiérrez, Sofía González Gallego, Alejandro Santana Coll, Judit Álamo Rosales
This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published in this journal are under a license Creative Commons: By 4.0 España from number 21 (2022).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and keep the acknowledgement of authorship.
- The texts published in this journal are – unless indicated otherwise – covered by the Creative Commons Attribution 4.0 international licence. You may copy, distribute, transmit and adapt the work, provided you attribute it (authorship, journal name, publisher) in the manner specified by the author(s) or licensor(s). The full text of the licence can be consulted here: http://creativecommons.org/licenses/by-nc/4.0.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).