Design of a rehabilitation device for thrombosis: a mathematical modelling activity in the training of engineers

Authors

DOI:

https://doi.org/10.35763/aiem21.4258

Keywords:

Mathematical models, Training of engineers, Mixed-praxeology, Didactic engineering, Study and research paths

Abstract

The research reported here is framed in the problem of proposing and analysing conducive mathematics teaching for future engineers. It considers that establishing relationships between mathematics and engineering courses is the first step towards training mathematically-competent engineers. In the frame of the Anthropological Theory of the Didactic, one approach to this problem consists of analysing mathematical modelling activities in engineering and transposing it to school. This work presents how a group of engineering students developed a rehabilitation device for thrombosis, relating different types of knowledge: mathematical, engineering, and practice come from different courses and the investigations made for this project.

Downloads

Download data is not yet available.

References

Artigue, M. (2015). Perspectives on design research: the case of didactical engineering. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 467–496). Springer. https://doi.org/10.1007/978-94-017-9181-6_17

Bartolomé, E., Florensa, I., Bosch, M., & Gascón, J. (2019). A ‘study and research path’ enriching the learning of mechanical engineering. European Journal of Engineering Education, 44(3), 330–346. https://doi.org/10.1080/03043797.2018.1490699

Bissell, C., & Dillon, C. (2000). Telling Tales: Models, Stories and Meanings. For the Learning of Mathematics, 20(3), 3–11.

Bourguignon, J.-P. (2001). Mathematics and Other Subjects. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss, & A. Schoenfeld (Eds.), The Teaching and Learning of Mathematics at University Level (Vol. 7, pp. 313–320). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47231-7_28

Castela, C., & Romo, A. (2011). Des mathématiques à l’automatique: Étude des effets de transposition sur la transformée de Laplace dans la formation des ingénieurs. Recherches en Didactique des Mathématiques, 31(1), 79–130.

Chevallard, Y. (1999). La recherche en didactique et la formation des professeurs: Problématiques, concepts, problèmes. Actes de La Xe École d’Été de Didactique des Mathématiques (Houlgate 18-25 Aout 1999) (pp. 98–112).

Chevallard, Y. (2015). Teaching Mathematics in Tomorrow’s Society: A Case for an Oncoming Counter Paradigm. In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 173–187). Springer International Publishing. https://doi.org/10.1007/978-3-319-12688-3_13

Costa, V. A., Arlego, M. J. F., & Otero, M. R. (2015). Las dialécticas en un Recorrido de Estudio e Investigación para la enseñanza del Cálculo Vectorial en la Universidad. Revista de Formación e Innovación Educativa Universitaria, 8(3), 146–161.

Diego-Mantecón, J. M., Haro, E., Blanco, T. F., & Romo-Vázquez, A. (2021). The chimera of the competency-based approach to teaching mathematics: A study of carpentry purchases for home projects. Educational Studies in Mathematics, 107(2), 339–357. https://doi.org/10.1007/s10649-021-10032-5

Faulkner, B., Johnson‐Glauch, N., Choi, D., & Herman, G. L. (2020). When am I ever going to use this? An investigation of the calculus content of core engineering courses. Journal of Engineering Education, 109(3), 402–423. https://doi.org/10.1002/jee.20344

García, F. J., Barquero, B., Florensa, I., & Bosch, M. (2019). Diseño de tareas en el marco de la Teoría Antropológica de lo Didáctico. Avances de Investigación En Educación Matemática, 15, 75–94. https://doi.org/10.35763/aiem.v0i15.267

Gonzalez-Martin, A. (2018). The use of integrals in Mechanics of Materials textbooks for engineering students: The case of the first moment of an area. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. Hogstad (Eds.), Proceedings of the Second Conference of the International Network for Didactic Research in University Mathematics (INDRUM 2018, 5-7 April 2018) (pp. 115–124). INDRUM Network, University of Agder. https://hal.archives-ouvertes.fr/hal-01849540

Graham, R. (2018). The global state-of-the-art in engineering education [MIT New Engineering Education Transformation (NEET)]. Massachusetts Institute of Technology.

Harris, D., Black, L., Hernandez-Martinez, P., Pepin, B., Williams, J., & TransMaths Team. (2015). Mathematics and its value for engineering students: What are the implications for teaching? International Journal of Mathematical Education in Science and Technology, 46(3), 321–336. https://doi.org/10.1080/0020739X.2014.979893

Hochmuth R. (2020) Service-Courses in University Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-15789-0_100025

Kent, P., & Noss, R. (2002). The mathematical components of engineering expertise: The relationship between doing and understanding mathematics. IEE 2nd Annual Symposium on Engineering Education, 2002 (pp. 39–39). https://doi.org/10.1049/ic:20020120

Peters, J., Hochmuth, R., & Schreiber, S. (2017). Applying an extended praxeological ATD-Model for analysing different mathematical discourses in higher engineering courses. In R. Göller, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.), Didactics of Mathematics in Higher Education as a Scientific Discipline (pp. 172–178). University of Kassel.

Pollak, H. O. (1988). Mathematics as a service subject – Why? In A. G. Howson, J. P. Kahane, P. Lauginie, & E. de Turckheim (Eds.), Mathematics as a Service Subject (pp. 28–34). Cambridge University Press. https://doi.org/10.1017/CBO9781139013505.004

Romo-Vázquez, A. (2009). La formation mathématique des futurs ingénieurs (Unpublished doctoral dissertation). Université Paris-Diderot. https://tel.archives-ouvertes.fr/tel-00470285/document

Rønning, F. (2021). The Role of Fourier Series in Mathematics and in Signal Theory International Journal of Research in Undergraduate Mathematics Education. 7, 189–210. https://doi.org/10.1007/s40753-021-00134-z

Siero, L., Romo, A., & Abundez, A. (2017). Methodology for designing didactical activities as an engineering project of a tactile sensorial therapeutic ramp. In T. Dooley & G. Gueudet (Eds.), Proceedings of the tenth congress of the European mathematical society for research in mathematics education (pp. 1004–1011). DCU Institute of Education and ERME.

Solares, D., Solares, A., & Padilla, E. (2016). La enseñanza de las matemáticas más allá de los salones de clase. Análisis de actividades laborales urbanas y rurales. Educación Matemática, 28(1), 69–98. https://doi.org/10.24844/EM2801.03

Stake, R. (2010). Qualitative research: Studying how things work. Guilford Press.

Tribus, M. (2005). Some Remarks on the Improvement of Engineering Education. Journal of Science Education and Technology, 14(1), 1–28. https://doi.org/10.1007/s10956-005-2731-4

Vázquez, R., Romo, A., Romo-Vázquez, R., & Trigueros, M. (2016). La separación ciega de fuentes: Un puente entre el álgebra lineal y el análisis de señales. Educación Matemática, 28(2), 31–57. https://doi.org/10.24844/EM2802.02

Williams, J., & Wake, G. (2007). Black Boxes in Workplace Mathematics. Educational Studies in Mathematics, 64(3), 317–343. https://doi.org/10.1007/s10649-006-9039z

Downloads

Published

2022-04-26

How to Cite

Siero González, L. R., Echavarría Cepeda, L. A., Romo Vázquez, A., & Navarro Torres, J. (2022). Design of a rehabilitation device for thrombosis: a mathematical modelling activity in the training of engineers. Advances of Research in Mathematics Education, (21), 107–134. https://doi.org/10.35763/aiem21.4258