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Abstract ∞ Many studies reported the importance of mathematical justification in collaborative problem-
solving (CPS). However, not all tasks could stimulate mathematical justification in CPS. This study explores 
the potential of a decision-making task in facilitating mathematical justification in CPS of a derivative 
topic. Two groups of 12 graders in Bandung, Indonesia solved a task. The group works were observed, rec-
orded, and the written works were collected. The findings showed that the task encouraged the groups to 
focus on justifying mathematical claims. Both groups successfully solved the task, yet different mathe-
matical justifications were observed. We discussed the possible roles of the task difficulty and groups’ 
mathematics ability in promoting mathematical justifications. Checking the effectiveness of the task on a 
larger sample was recommended for further studies. 
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Resumen ∞ Muchos estudios informaron la importancia de la justificación matemática en la resolución 
colaborativa de problemas (CPS). Sin embargo, no todas las tareas podrían estimular la justificación ma-
temática en CPS. Este estudio explora el potencial de una tarea de toma de decisiones para facilitar la jus-
tificación matemática en CPS de un tema derivado. Dos grupos de alumnos de 12º grado en Bandung, In-
donesia, resuelven una tarea. Los trabajos grupales fueron observados, grabados y recopilados los trabajos 
escritos. Los hallazgos mostraron que la tarea animó a los grupos a centrarse en justificar afirmaciones 
matemáticas. Ambos grupos resolvieron con éxito la tarea, aunque se observaron diferentes justificaciones 
matemáticas. Discutimos los posibles roles de la dificultad de la tarea y la habilidad matemática de los gru-
pos en la promoción de justificaciones matemáticas. Se recomendó para estudios posteriores comprobar la 
eficacia de la tarea en una muestra más grande. 
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1. INTRODUCTION 

Mathematical justification is an activity of providing arguments that support or re-
fute a mathematical claim by using prior mathematical knowledge and meeting the 
requirements of the community (de Villiers, 1990; Staples et al., 2012). Cirillo et al. 
(2016) stated that it is the essence of reasoning activity in problem-solving. The 
habit of giving reasons for the truth of a claim or steps taken in solving a problem 
encourages good reasoning skills (Brodie, 2010b; NCTM, 2000). By justifying a 
claim, students try to find reasons for their claims and do not simply accept the 
ideas they receive.  

Several studies stated that mathematical justification determines the success 
of collaborative problem-solving (CPS) (Chiu, 2008; Díez-Palomar et al., 2021). 
Chiu (2008) analyzed problem-solving in groups of high school students and found 
that justification had the most significant effect on the success of a group. In addi-
tion, Díez-Palomar et al. (2021) found that student interactions dominated by 
mathematical justification were closely related to whether or not a group’s answers 
were correct because students checked the validity of claims and made them the 
basis of their answers. Thus, the group’s success was related to mathematical jus-
tification, which provides space to question why their steps can be conducted and 
are legitimate to reach answers. 

Despite its importance, some studies reported that mathematical justifica-
tion was neither practiced nor demanded by students in CPS (Hamidy & 
Suryaningtyas, 2016; Stylianou & Blanton, 2002). Students tended to go through 
the solving process to get an answer, not to argue why the answer was valid. Be-
sides, teachers found it hard to encourage mathematical justification in the class-
room by facilitating them into it or creating stimulating tasks (Brodie, 2010a). The 
role was challenging as it required teachers to create a situation where students 
questioned themselves and found a way to convince others mathematically. It led 
to the need to investigate a task that could accommodate such activity. 

Cobb et al. (1992) stated that mathematical justification happened when there 
was a situation for justification, a situation where a claim was questioned and re-
quested for validation. Not any task can stimulate such a situation. Chua (2017) in-
troduced one such task as a decision-making task. In decision-making, students 
would be asked to decide whether an answer or statement was correct and explain 
why. It could be inferred that the task might stimulate the situation for justification 
and, thus, the mathematical justification itself. This study explores the strengths 
and limitations of decision-making task in facilitating mathematical justification, 
especially in the context of CPS. Through this, we explored how students interacted 
with each other in the problem-solving process and identified mathematical justi-
fication made by them. 
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2. THEORETICAL FRAMEWORK 

2.1. Mathematical justification 

Mathematical justification can be interpreted as an activity to refute or defend a 
claim by using statements or accepted mathematical reasoning or as an argument 
that is the product of the activity (Staples et al., 2012). Similarly, Yackel and Cobb 
(1996) defined mathematical justification as an argument or agreement on an ac-
ceptable mathematical explanation for a mathematical method to be used. Mathe-
matical justification involves “acceptance” of the individuals based on the agree-
ment that a mathematical claim is reasonable (Bieda et al., 2022). Thus, mathe-
matical justification also considers the social context in which mathematical activ-
ities are carried out (Simon & Blume, 1996; Staples & Conner, 2022). 

Mathematical justification is a cognitive and a social activity. In carrying out 
mathematical justification, besides using cognition in arguing to support (or re-
fute) a claim, one also requires effort to convince others in that activity (Sowder & 
Harel, 1998). Due to the involvement of social considerations, there are times when 
mathematical justification is not necessarily logically complete (Jaffe, 1997; Kil-
patrick et al., 2001). For example, a study by Sowder and Harel (1998) asked stu-
dents to check whether a rhombus would be formed if the midpoints of the sides of 
an isosceles trapezoid were connected. Most students answered yes and justified by 
drawing an isosceles trapezoid, making the midpoints of the sides, and showing 
that the points were connected to form a rhombus. The student in this study chose 
drawing to convince others of his mathematical claims although logically incom-
plete. 

The decision on what kind of argument is considered good mathematical jus-
tification is based on how convincing (plausibility) the argument is (Walton, 2001). 
In this regard, several studies identified levels of mathematical justification. Simon 
and Blume (1996) divided students’ mathematical justification into five levels, i.e., 
level 0 (without justification), level 1 (appeal to external authority), level 2 (empir-
ical demonstration), level 3 (deductive justification expressed through examples), 
and level 4 (deductive justification independent of example). Vale et al. (2016) 
identified similar levels, while Sowder and Harel (1998) and Carpenter et al. (2005) 
considered them as types but explained that one type was better than those men-
tioned earlier. 

We acknowledged that the choice of any classification scheme would empha-
size some aspects of justifications and, at the same time, de-emphasize others. In 
this study, a statement by Ellis et al. below represented our thoughtswhen choosing 
the classification scheme. 

When one seeks to examine the co-construction and enactment of justification 
norms and practices …, which mathematical ideas were justified, and the extent 
to which members of the classroom community were convinced by the justifi-
cations, a broader accounting of the nature of justifications and justification 
activity is appropriate. (2022, p. 291) 
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We resorted to having five levels of mathematical justification, similar to Vale 
et al. (2016), to help us describe the variety of mathematical justifications while 
utilizing the decision-making task (Table 1). We think classifying the justifications 
into five levels would help us see the broader quality of efforts (or absence of effort) 
made by students to justify their claims. 

Table 1. Coding scheme 

Justification code Description 

P Trigger of a situation for justification 

L0 No justification  

L1 Appeal to authority  

L2 Empirical or perceptual demonstration  

L3 Symbolic example without generalization  

L4 Symbolic example with generalization  

Interaction code Description 

Int. 
Students’ thinking is affected by their interactions within the 
group. 

Syn. Students expect others to wait for a talk or idea and process it as 
soon as being received. 

Neg. One student does not force his idea on his peers within the group. 

Participant code Description 

Ti The i-th* participant with a high math ability 

Si The i-th* participant with average math ability 

Ri The i-th* participant with low math ability 

 
* Order was made to differentiate participants of the same mathematics ability, not for ranking 
purposes 
 
 

At level 0, students accepted a claim without trying to justify the truth of the 
claim. At level 1, students state that a claim is valid because it comes from a more 
“authoritative” source outside themselves, such as a textbook or teacher. For ex-
ample, a student does a particular strategy because his teacher suggested using that 
strategy beforehand. It is interesting to note that in these two first levels, it is prob-
ably not suitable to call them an act of mathematically justifying claims, as no 
mathematical argument (level 1) or even no argument (level 0) was presented. 
However, we consider these two levels as important as other levels in terms of 
helping us see and understand what students thought as valid claims or even 
whether they think they need to justify them in the first place. 

At level 2, students provide justification based on empirical demonstrations, 
i.e., by what they see and show it to others by demonstrating it. For example, stu-
dents support the claim that a picture of a quadrilateral is a model of a square be-
cause the sides are the same length. He may also convince others by measuring the 
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length of the sides, which are indeed the same length, with some measuring in-
struments. This student justifies by referring to what he sees and experiences when 
interacting with the picture of the quadrilateral. 

At level 3, students begin to use symbolically expressed examples that have 
not been generalized. Sowder and Harel (1998) provided an example at this level 
when students were asked if 𝑛2 − 79𝑛 + 1601 is prime for any value of 𝑛. In this ex-
ample, a student justified the claim by giving examples of the values 𝑛2 − 79𝑛 + 1601 
for several values of 𝑛 and concluded that the calculation always gave prime num-
bers without generalizing to all possible values of 𝑛. At this level, the student con-
firmed his claims to others by using examples, and because he did not use general-
izations, he did not see that for 𝑛 = 80, 𝑛2 − 79𝑛 + 1601 is not prime. At level 4, stu-
dents make justifications based on generalizations that do not rely on examples, or 
they use definitions, theorems, or rules of mathematical logic. Vale et al. (2016) 
stated that this level was the most difficult for students to find because they did not 
feel that this justification was necessary to have their claims accepted by other stu-
dents. 

2.2. Interactions and mathematical justification in collaborative problem solving 

In this section, we try to elaborate on literatures in understanding students’ inter-
actions and mathematical justification in the context of CPS. Students will go 
through stages of solving problems collaboratively, i.e., analyzing, planning, im-
plementing, and evaluating (Rott et al., 2021) while interacting. It is undeniable 
that students might have different quality of interaction during CPS. 

Dillenbourg (1999) stated three criteria to see whether students interact col-
laboratively, i.e., interactivity, synchronicity, and negotiability. Interactivity refers 
to how interactions affect students’ thinking within a group. By this, interactivity 
goes beyond how often students took turns or talked to each other but how they 
become responsive to others’ thinking. Another criterion is ‘doing something to-
gether’ or synchronicity. It refers to how each student expects others to wait for a 
talk or idea and will process that idea as soon as being received. The synchronicity 
also shows how, in CPS, collaboration happens when giving, listening, and re-
sponding to ideas synchronously. Synchronicity shows that students do not work 
in parallel or through a division of labor but are continuously alert to others’ efforts 
throughout the CPS process (Jermann, 2004). Negotiability refers to how one stu-
dent cannot force his idea on his peers but must construct a common understand-
ing. It shows that the interactions are made to reach a common understanding of 
each student within the group. Negotiability discourages each student from under-
standing only a portion of the effort or goal, thus resulting in a division of under-
standing (Lai, 2011). To understand the use of the decision-making task in this 
study, we resorted to identifying the three criteria by Dillenbourg to help us de-
scribe the interactions that happened during CPS (Table 1). 

Student statements may be questioned during discussions in the CPS stages. 
A co-constructed justification is formed when the group agrees upon students’ 
mathematical justification (Mueller, 2009; Yackel, 2004). A similar concept was 
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proposed by Tatsis and Koleza (2008) and Yackel and Cobb (2001) as the norm of 
mathematical justification, regularities in collective activity when a mathematical 
method or claim needs to be supported by a reason. In other words, mathematical 
justification in the CPS situation can be seen as a mathematical justification built 
jointly by a group or as a regularity of mathematical justification activities when a 
group solves a problem. Co-constructed mathematical justification or norms of 
mathematical justification determine whether the ongoing CPS process can pro-
ceed to the next stage or whether it is necessary to return to the previous stage 
(McClain & Cobb, 2001; Partanen & Kaasila, 2015; Tatsis, 2007). 

2.3. Task stimulating mathematical justification 

Mathematical justification can be observed by providing tasks that trigger claims 
and arguments supporting those claims. It is important to select tasks or problems 
that support students’ emergence of mathematical justification (Heid et al., 2002) 
because students will be provoked to convince others of their mathematical argu-
ments. Chua (2017) described a decision-making task as one of the tasks stimulat-
ing justification. In this task, students are asked to decide whether a statement is 
correct and explain why. An example of a decision-making task is given in Figure 1. 
In this task, students had to decide whether 207 is a term in the given sequence and 
argue to support that decision. 

Figure 1. Example of decision-making task 

The first four terms of a sequence are 5, 9, 13 and 17. Explain 

whether 207 is a term in the sequence. 

Source: Chua, 2017, p. 120. 
 

Decision-making tasks offer choices for a mathematical decision and forced 
students to focus on supporting or refuting the claim stated within. The task was 
used in several studies (Chua, 2016; Küchemann & Hoyles, 2006) investigating in-
dividual problem-solving and showed its strengths in stimulating mathematical 
justification. The exploration of such a task being given in a CPS situation would 
bring insights into its strengths in a collective setting. 

3. METHODS 

A task of derivative (Figure 2) was given to two groups of three 12th-grade students. 
They were chosen based on their mathematics ability, determined by their accu-
mulated report scores in 10 and 11 grades. In this study, we focused on exploring 
the mathematical justifications of groups with varied abilities which we believed 
were two of the typical group sets in ordinary classrooms. Further, several studies 
found that students of different mathematics abilities tended to give different jus-
tifications (e.g., Chua, 2016; Staples & Conner, 2022; Whitacre et al., 2017). On that 
point, the group setting might enrich our understanding of how students justified 
their thinking to their peers whose thinking might differ. Group 1 consisted of stu-
dents with high (T1), average (S1), and low (R1) mathematics abilities. Group 2 



Fatmanissa, N., Yuli Eko Siswono, T., Lukito, A., & Ismail 

AIEM (2024), 26, 85-103 91 

consisted of two students with a high ability (T2 and T3) and one with an average 
ability (S2). 

The task was designed following Chua’s description of a decision-making 
task (2017). There are two considerations in constructing the task: it contained an 
explicit statement to be validated and required a derivative concept to solve. The 
three functions in the task were presented graphically to allow for different justi-
fications upon functions equations, knowing that some students might rely only on 
perceptual (in this case, graphical) demonstration to justify claims. Two mathe-
matical education experts and the participants’ mathematics teacher consulted the 
construction to ensure its readability and clarity. The test was written and admin-
istered in Indonesian. 

Figure 2. The task for participants 

Andi is given three graphs as follows. Among the three graphs, he is asked to determine 
which one is the graph for function 𝑓, 𝑓′, and 𝑓”. Andi stated that 𝑎 is the graph of 𝑓, 𝑏 is the 
graph of 𝑓′, and 𝑐 is the graph of 𝑓”. Is Andi’s statement true? Justify your answer. 
 

a b 

  
c 

 
 

 
 

In the task, students were expected to determine the truth of Andi’s state-
ment by checking if 𝑎 is the graph of 𝑓, 𝑏 is the graph of 𝑓′, and 𝑐 is the graph of 𝑓”. 
The expected answer is that Andi’s statement is wrong, but coming to this conclu-
sion might be due to various strategies and justifications. One possibility is that 
students want to determine the degree of each polynomial function based on the 
graphs. For example, they might successfully determine that 𝑎 is a polynomial 
function of degree three, 𝑏 is a quadratic function, and 𝑐 is a polynomial function of 
degree four by considering the number of stationary points and shape of each 
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function. By coming to this information, they might realize that Andi’s statement 
that 𝑐 is the derivative of 𝑏 is incorrect because it is impossible to have a four-de-
gree polynomial function as the derivative of a quadratic function. The way they 
come to this conclusion is justified by how they perceptually see the stationary 
points and shape of the graph. 

In another possibility, students might not be satisfied by only knowing the 
degree of the function. They might go to higher justification by determining the 
exact equation of each function to defend the relationship of the functions. For ex-
ample, they might have determined that 𝑏(𝑥) = 12𝑥2 − 4 from how the graph is sta-

tionary at (0, −4) and passes through (−
1

2
, −1) and (1

2
, −1). They might also use the 

derivative rule to determine the derivative of 𝑏 and result in 𝑏′ = 24𝑥, which does 
not belong to any function in the task. Another possibility is that students choose 
to determine what function has a derivative of 12𝑥2 − 4 and conjectured that the 
function is 𝑎 based on their understanding of the derivative rule. 

The task topic and plan were announced to students a week before the admin-
istration. Students could use a non-graphical calculator and were instructed to dis-
cuss or ask their teammates whenever they were uncertain. The task was discussed 
for an hour, and each group was expected to write their final answer. The researcher 
provided the paper, and each group was given only one page to ensure information 
sharing and joint effort. Conversation in each group was recorded, and all paper 
works were collected. Discussion upon work was transcribed and coded based on 
the scheme in Table 1. 

4. FINDINGS AND DISCUSSIONS 

In this section, we explored the use of decision-making tasks by looking at the jus-
tifications during the solving processes and interactions of the two groups. Both 
groups showed interactions among teammates, and various mathematical justifi-
cations were observed. However, different interactions and processes were evident 
between groups in solving the same task. 

4.1. Group 1 (T1, S1, and R1) 

Students in this group began the CPS process in the analysis phase by identifying 
the shape of each graph. Then, students did not explicitly discuss the plans they 
would do but immediately entered the implementation phase. First, T1 recognized 
graph 𝑏 as a graph of a quadratic function and was agreed by the other two students. 
He convinced the other two students by stating that he had seen their teacher ex-
plain the shape of the graph of a polynomial function of degree three, whose shape 
was like graph 𝑎. In this case, he performed an appeal to authority type of mathe-
matical justification. Students S1 and R1 agreed because they remembered the same 
thing. 

T1 concluded that function 𝑏 is the derivative of function 𝑎. A mathematical 
justification was carried out by students S1 and T1 when R1 questioned the conclu-
sion that quadratic functions are derivatives of cubic polynomial functions. 
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Students S1 and T1 provided mathematical justification by explaining an example, 
as presented in the transcript below. 

S1: This one (graph 𝑎) could be 𝑥3 − 𝑥2 + 3𝑥 − 12, something like that. 

T1: Right. 

S1: Then we differentiate into 3𝑥2 … (pause, looking at R) 

R1: Yes, just try it (laughing) 

S1: So, 3𝑥2 − 2𝑥 + 3, right? 

T1: See, that 𝑥2 is quadratic. 

R1 agreed upon the mathematical justification presented by S1 and T1. They 
used an example to support the claim that the derivative of a cubic polynomial 
function was quadratic. Furthermore, the results of their discussion led to the fact 
that it was impossible for graph 𝑐 to be the derivative of graph 𝑏 because if so, graph 
𝑐 would be a linear function. R1 then asked, “Is it possible to find the equation of 
function 𝑐 by observing the ups and downs of the graph?” R1’s question led to S1’s 
idea to study the graphs of polynomial functions of even degrees. R1 gave an exam-
ple that the function 𝑦 = 𝑥4 shaped like the letter “U”. S1 then convinced students 
R1 and T1 that the graph of 𝑐 is a polynomial function of degree four because the 
shape of the graph of 𝑐 resembles the shape of the graph of the function 𝑦 = 𝑥4. S1 
demonstrated a mathematical justification of a perceptual demonstration. They 
closed this task by concluding that Andi’s statement was wrong and curve 𝑐 was a 
graph of a function 𝑓, curve 𝑎 is 𝑓′, and curve 𝑏 is 𝑓”. This group did not evaluate 
their solution and wrote their final work which is translated into “The equation of 
graph 𝑐 has the greatest power, which is 4 (𝑥4), if being differentiated, the (result-
ing) equation has the highest power of 3 (𝑥3) and graph 𝑎 is the graph whose equa-
tion contains 𝑥3. Finally, if the equation of graph 𝑎 is differentiated, it will be quad-
ratic, and graph 𝑏 is quadratic. 

From the CPS process in Group 1, all criteria of collaborative interaction were 
observed. While R asked for an explanation of a certain claim, this request affected 
S1 and T1’s thinking and triggered them to give arguments to support the claim. 
Interactivity was also seen in how R1 accepted S1 and T1’s justification. The group’s 
synchronicity was shown by how students took turns in talking and being involved 
in the CPS process together. The negotiability was apparent that despite most jus-
tification and claims given by T1 and triggers and doubts coming from S1 dan R1, it 
was evident that no student forced his idea on others. 

In summary, during the discussions, five claims emerged, concluding that 
Andi’s statement in the task was wrong, and efforts to justify them were observed 
(Table 2). In completing this task, students carried out mathematical justification 
in several ways, i.e., using the teacher’s explanation to support their claim, using 
an example to show the truth of a claim, and using what they saw from the shape 
of the function graph. Students T1 and S1 provided mathematical justification to 
convince students R1 or to form an agreement for the group’s conclusions. R1 trig-
gered the emergence of mathematical justification through his questions, even 
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though he did not provide mathematical justification. Students T1 and S1 provided 
different mathematical justifications. 

Table 2. Claims and justifications made by Group 1 

Claim (by order of appearance) 
Mathematical 
justification Students’ utterances/ activity 

K1 
𝑎 is a cubic polynomial 
function Appeal to authority 

“I had seen the teacher explaining the shape of 
it.” 

K2 𝑏 is a quadratic function Appeal to authority “Our teacher had shown us this shape before.” 

K3 𝑏 is the derivative of 𝑎 
Symbolic example 
without generalization 

Giving an example of a cubic polynomial 
function and differentiating it into a quadratic 
function 

K4 
𝑐 is the polynomial function 
of degree 4 

Empirical or perceptual 
demonstration 

Demonstrating that the function 𝑦 = 𝑥4 shaped 
like the letter “U” 

K5 
𝑏 is the derivative of 𝑎, and 𝑎 
is the derivative of 𝑐 

Symbolic example 
without generalization 

Giving an example that the derivative of 𝑦 = 𝑥4 is 
a cubic polynomial function 

 
 

It was interesting to learn more about why the group did not manage to de-
termine the equation of graph 𝑐, which might lead to better justification, despite 
touching on the issue. After the task completion, the interview revealed students’ 
thoughts below when asked how confident they were with their answers (“I” for 
the interviewer). 

I: How confident are you with your answer? Can you share your stories? 

S1: I agree that 𝑎 is of degree three, 𝑏 is degree two. But 𝑐, I am confused. 

T1: I get a suspicion that because the two functions are of degree two and three, 
𝑐 must be of degree four. 

S1: Yes, but if 𝑐 is 𝑥4, it is not the same (with the shape of the graph). It is more 
similar to 𝑏, but it is steeper. 

T1: Right, when I see S’s graph of 𝑥4, I believe there must be something more. 
There are more requirements. Not just a simple 𝑥4. 

S1: Yes, there must be more of it. But the thing is, we don’t know what those are. 

T1: Yes, the coefficients of 𝑎, 𝑏, 𝑐, 𝑑 (from 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒), we must know 
them, so the graph will be like 𝑐. 

I: Do you think you need to know the equation of the function to solve this prob-
lem? 

T1: Yes. I think we need it. Just to make sure it is really degree four. 

R1: But again, we don’t know how. 

Students in Group 1 knew that they needed an equation to justify why graph 𝑐 
is of degree four. However, they could not come up with any clues about the equa-
tion. This failure to find the equation made them resort to the justification of what 
they could offer by giving an example of a four-degree polynomial function. 
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4.2. Group 2 (T2, T3, and S2) 

The group started the solving process by reading the problem. The analysis stage 
was started by identifying that they needed to show if Andi’s statement about the 
problem was accurate. It happened right after reading the sentence, “Andi stated 
that 𝑎 was the graph of 𝑓, 𝑏 was the graph of 𝑓′, and 𝑐 was the graph of 𝑓”. The sen-
tence was read repeatedly during the discussion, showing the role of this sentence 
in refocusing students’ process to get the answer. After identifying the objective, 
students’ discussion led to their plan to find the answer. They planned to determine 
the equation of each function to know which function was the derivative of which. 

They went to the implementation stage by determining the equation of graph 
𝑏 first. While trying to determine the equation, they got distracted by the shapes of 
each graph. T3 claimed that the function in graph 𝑏 was the second derivative of 𝑓 
due to its simplest shape among all graphs. She described what she meant by simple 
as “having least ups and downs”, which was agreed by her peers. It was shown that 
they used the perceptual demonstration to justify this claim. They further shifted 
their plan from finding the equation for each graph to observing the shapes. By ob-
serving the shapes of the rest of the two graphs, T2 claimed that 𝑐 is the polynomial 
function of degree four and 𝑎 is the polynomial function of degree three due to its 
shapes. This claim was agreed upon by T3 and S2, and this agreement led to their 
further claim that 𝑏 is the derivative of 𝑎 and 𝑎 is the derivative of 𝑐. They made a 
claim based on the fact that the derivative of a cubic polynomial is a quadratic func-
tion. However, the empirical demonstration type of justification did not satisfy T3, 
as stated below. 

T3: If this graph’s (graph 𝑏) shape is like this, it is surely the last graph (the 
second derivative) 

T2: Graph 𝑏 (emphasizing). 

T2: I think it is certain. This graph (graph 𝑎) looks the same with cubic polyno-
mial function, so this is the second one (the first derivative). 

T3: But certainly, we need to know the equation, right? So that we can explain it 
easily. 

T2, S2: Yes. 

They understood that using the shapes of the graphs to identify their relations 
might not be enough. T3 triggered the mathematical justification to a higher level 
by requesting them to return to the original plan, i.e., determining the equation of 
the functions. The excerpt below shows how they came up with the equation for 
graph 𝑐. 

T2: I believe 𝑐 is of degree four. That shape is degree four. But what is the equa-
tion? 

T3: What about the stationary points? If this (pointing at the stationary points 
at 𝑥 −axis) is 1 and -1 let’s just write (𝑥 − 1) and (𝑥 + 1) first and see (writing (𝑥 −

1) (𝑥 + 1)). 

S2: But that’s degree two. 
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T3: Right. What to do? Should we just square them? 

T2: I think we learnt before in polynomial function, right? (Trying to open her 
notes). 

S2: Try squaring it, maybe? 

T3: Like this? (Writing (𝑥 − 1)2(𝑥 + 1)2) 

T2: How do we know it’s true? So, it will be (multiplying the polynomials) 𝑥4 −

2𝑥2 + 1. 

T3: I think it is the same with the graph, guys. Plug in -1 or 1. We get 0. 

T2: If 𝑥 = 0? Wow, true! It is 1. I think we are correct, guys. 

Group 2’s dissatisfaction with merely using the graph shape led them to try 
establishing the equation of graph 𝑐. By having a degree four equation as the goal, 
they conjectured an equation by making use of the fact that the graph passed 
through (−1,0) and (1,0). The fact led to the equation having (𝑥 − 1) and (𝑥 + 1). Fur-
ther, they knew they needed to justify the conjectured equation to the given graph 
by substituting several values of 𝑥. Their mathematical justification was a symbolic 
example with generalization as they used properties to find the equations without 
relying on examples or perceptual demonstration. Their discussions brought the 
equation of graph 𝑐 and its first and second derivatives. They concluded by writing 
the final work, as shown in Figure 4.  

Figure 4. Final work of Group 2 

 
 

Translation: in our opinion, Andi’s statement is wrong. Because we find that 
graph 𝑐 is 𝑓, and its derivative is 𝑓′ which is 𝑎, and its second derivative is 𝑓′′ 
which is 𝑏. 

Tentative conclusion: graph 𝑏 = 𝑓′′, graph 𝑎 = 𝑓′, graph 𝑐 = 𝑓. 

So, Andi is wrong. 

The equation of graph 𝑐 is possibly of degree 4. 

The equation of graph 𝑎 is possibly of degree 3. 

The equation of graph 𝑏 is possibly of degree 2. 
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The CPS process in Group 2 showed all criteria of collaborative interaction. 
Either claims, triggers for justification, or justifications were made by each stu-
dent. The group was synchronous in going through the CPS process, with claims 
made by students quite evenly. The negotiability was shown by no student domi-
nating the claims or justification. Five justifications were done by Group 2, with two 
of them addressing the same claim (Table 3). No appeal to authority was observed, 
and students justified their claims using a symbolic example with generalization 
for some claims. The justifications around claim K3 showed how prior justification 
(“The derivative of a three-degree polynomial function is quadratic”) was consid-
ered not enough and refined into a better justification (Determining the equation 
of each function). 

Table 3. Claims and justifications made by Group 2 

Claims (by order of appearance) 
Mathematical 
justification Students’ utterances/ activity 

K1 𝑏 is the second derivative of 𝑓 
Empirical or perceptual 
demonstration “𝑏 has the least ups and downs” 

K2 
𝑐 is the polynomial function of degree 4, 
𝑎 is the polynomial function of degree 3  

Empirical or perceptual 
demonstration 

“If the shape is like this, it is four-
degree polynomials” 

K3a 
𝑏 is the derivative of 𝑎 and 𝑎 is the 
derivative of 𝑐 

Symbolic example 
without generalization 

“The derivative of a three-degree 
polynomial function is quadratic” 

K3b 
𝑏 is the derivative of 𝑎 and 𝑎 is the 
derivative of 𝑐 

Symbolic example with 
generalization 

Determining the equation of each 
function 

K4 
𝑓(𝑥) = 𝑥4 − 2𝑥2 + 1 is the function of 
graph 𝑐, 𝑓′(𝑥) = 4𝑥3 − 4𝑥, and 𝑓”(𝑥) =

12𝑥2 − 4. 

Symbolic example with 
generalization 

Determining the derivatives using 
the derivative rule 

 
 

Compared to Group 1, Group 2 managed to have better justification by coming 
up with graph 𝑐’s equation to show it is a degree-four polynomial function. Stu-
dents showed urgency in coming up with an equation through several responses 
below. 

S2: It (determining the degree based on shapes) just doesn’t feel right. 

T2: Yes. I keep thinking about the equation. If not, maybe I cannot sleep tonight 
(laughing). 

T3: Derivative is a challenging topic, right? I don’t think the way we should an-
swer is that simple. 

T2: I think so. The graph scares me, actually. Like you don’t know how to verify 
from it, so, I think I should go with the equation to make sure if our answer is 
true. 

We see that the motivation for finding the equation was vivid, and students 
did come up with this plan at the beginning of the CPS process. Their process in 
finding the equation could be a good example of how the justification was not ini-
tially pursued formally (e.g., by using a general form of 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 and 
utilizing the given points) but evolved through conjecturing the equation and going 
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backwards to verify the equation. The mathematical justification was refined 
through students’ discussion and the urge to provide a more convincing answer. 

The potential of the decision-making task in stimulating justifications in CPS 
was discussed from two perspectives: students’ interaction and the variety of jus-
tifications. Students’ interaction in solving the task collaboratively was obvious in 
both groups. Addressing this, students admitted that the task was difficult but do-
able as each student managed to contribute to the group and completed each other. 
Several studies discussed the difficulty level (Chiu, 2008; Chiu & Khoo, 2003; Taylor 
& McDonald, 2007) to promote interactions in CPS. The presence of teachers and 
researchers during CPS and the recorded discussion might promote the interac-
tions. Looking at the strategies brought by both groups, the task did not allow for 
the division of effort to get the solution. Each group step was collaboratively com-
pleted and recorded in the single shared working space. 

The task allowed for a variety of mathematical justifications. It allowed stu-
dents to concentrate their discussion on agreeing or disagreeing with the explicit 
claim made by Andi in the task. The two groups showed that they needed to justify 
several claims to get the solution. Interestingly, the two groups supported the same 
claim with different mathematical justifications. For example, both groups decided 
that Andi’s statement in the task was wrong. To support this, both groups came to 
a claim that “𝑏 is the derivative of 𝑎 and 𝑎 is the derivative of 𝑐”. Group 1 agreed on 
using an example that the derivative of 𝑦 = 𝑥4 is a cubic polynomial function as their 
mathematical justification to support that claim, despite knowing that they need 
to come up with equations of the functions. On the other hand, Group 2 believed 
that this justification alone was insufficient and continued to determine the equa-
tion of each function. On that point, we considered that the difference in mathe-
matics abilities between the two groups played a role. For example, the success of 
Group 2 in finding the equation of 𝑐 was promoted by how T3 came up with the idea 
of utilizing the function’s zeros. This idea might not appear if T3 did not have 
enough understanding of the relationship between zeros and the function. Further, 
the group played along well in conjecturing the equation and verifying the equa-
tion, not relying on T3. 

The two groups’ interaction was different in some aspects, although all cri-
teria of collaborative interaction were apparent. In Group 1, we observed that trig-
gers for justification mostly, although not all, came from S1 and R1, while T1 dom-
inantly provided the justifications. On the other hand, each student in Group 2 
somehow more dynamically exchanged roles as either trigger or justification pro-
viders. We considered the role exchange as one of the factors that affected how 
Group 2 managed to provide better justifications for their claims during CPS. The 
role exchanges allowed each student in Group 2 to think actively between question-
ing “Is this really true?” and providing justification for the answer, which might 
not be the case for Group 1. Additionally, this role-taking allowed a particular jus-
tification to be questioned again and then re-justified by the group, not by an indi-
vidual member. 
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5. CONCLUSION 

The decision-making task could help researchers see the mathematical justifica-
tions made by both groups. It allowed them to solve the problem collaboratively in 
a shared space. The task also promoted the discussion by concentrating on an ex-
plicit claim, encouraging students to justify further while trying to get the solution. 
The observed collaboration and justifications were also promoted by the adequate 
level of difficulty experienced by students, which might not be the case for others. 
Considering the task’s difficulty level would be helpful for future studies utilizing 
the same task. 

The task was given in a setting where students could not consult with the 
teacher or observer during the CPS process. In that case, any claims and justifica-
tions appeared naturally from the groups, allowing us to focus on their interactions 
and thinking without any support from others. However, we considered that the 
current task could be insufficient to see expected justifications if not observed since 
no specific types of justifications were requested in the written task. On that point, 
we recommended two efforts for a richer analysis. First, the task administration 
could be accompanied by by the teacher or researcher’s scaffolding. The scaffolding 
might be developed based on the desired justification level and given whenever a 
situation of justification does not appear or when students’ interaction goes in an 
undesirable direction. Another option is to add some guiding questions (as written 
scaffolding) for students transitioning from the lowest to the highest level of jus-
tifications. 

The participants’ selection in this study relied heavily on how they were con-
sidered low, average, or high in mathematics ability using students’ report scores. 
The shift from using students’ report scores to using a standardized test might re-
sult in different participants’ selection and, further, on findings of the study. Alt-
hough small in size, the study is worthwhile to be developed further. A similar task 
might be investigated using a larger sample to explore the task’s potential better. 
Despite the limitations, it is hoped that the findings of this study offer helpful in-
sights for researchers and teachers about a task stimulating mathematical justifi-
cations in CPS. 
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La importancia de la justificación matemática en la resolución colaborativa de pro-
blemas (CPS, por sus siglas en inglés) ha sido destacada por muchos estudios. Sin 
embargo, no todas las tareas pueden estimular la justificación matemática en el 
CPS. Este estudio explora el potencial de una tarea de toma de decisiones para faci-
litar la justificación matemática en el CPS en un tema de derivadas. La tarea fue di-
señada de tal manera que había una afirmación explícita que debía ser validada, y 
el grupo debía decidir si la afirmación era verdadera. La tarea se administró a dos 
grupos de estudiantes de 12.º curso en Bandung, Indonesia. El Grupo 1 estaba com-
puesto por estudiantes con habilidades matemáticas alta, media y baja. El Grupo 2 
estaba formado por estudiantes con habilidades alta y media. Durante el proceso de 
CPS, se permitió utilizar una calculadora no gráfica y se les animó a cuestionar 
cualquier opinión que consideraran dudosa. Se les informó que su proceso sería 
grabado y que su trabajo escrito sería recopilado al final de la sesión. Analizamos el 
potencial de la tarea desde dos perspectivas: las actividades de justificación mate-
mática y las interacciones de los estudiantes dentro de cada grupo. Desde la pers-
pectiva de la justificación matemática, identificamos las justificaciones hechas por 
los estudiantes en cinco niveles: sin justificación, apelación a la autoridad, demos-
tración empírica o perceptual, ejemplo simbólico sin generalización y ejemplo sim-
bólico con generalización. En cuanto a las interacciones de los estudiantes, las co-
dificamos en tres criterios: interactividad, sincronicidad y negociabilidad. Además, 
codificamos qué estudiante iniciaba o proporcionaba las justificaciones matemáti-
cas para entender mejor las interacciones. Los resultados mostraron que la tarea 
permitió diversas justificaciones matemáticas. Se observó que ambos grupos se 
centraron en validar la afirmación explícita de la tarea y resolvieron la tarea con 
éxito. Durante el proceso de CPS, el Grupo 1 logró ofrecer ejemplos simbólicos sin 
generalización como su justificación para la afirmación final. Por otro lado, el 
Grupo 2 logró acordar una mejor justificación mediante ejemplos simbólicos con 
generalización para su afirmación final. Desde la perspectiva de las interacciones, 
las justificaciones del Grupo 1 fueron ofrecidas principalmente por los estudiantes 
con habilidades altas, mientras que las justificaciones del Grupo 2 fueron ofrecidas 
de manera alternada entre los estudiantes. Como factor adicional al potencial de la 
tarea, consideramos que la dificultad adecuada percibida por los estudiantes fue un 
factor de apoyo para las discusiones. Sugerimos examinar la efectividad de la tarea 
en una muestra más grande. 
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