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Abstract o This study investigated the mathematical connections found in the solutions provided by 22
preservice secondary mathematics teachers to a set of algebra problems. Interest in, and research on,
mathematical connections has gained prominence of the past decade. Here, we use the Extended Theory
of Mathematical Connections or ETMC to explore the types of connections that this framework does and
does not capture in the preservice teachers’ solutions. The ETMC surfaced four types of mathematical con-
nections across four problems: ‘different representations’, ‘procedural’, ‘part-whole’ and ‘meaning’. The
other types of connections defined in ETMC such as ‘reversibility’ or ‘feature’ were not found in our data,
perhaps because of the specific problems that were used. Some mathematical connections were not high-
lighted when examining the solutions through the lens of ETMC (‘meaning’, ‘implication or if/then’ and
modelling) addressing areas in which ETMC might be limited in its capacity to support researchers in iden-
tifying mathematical connections in different contexts.

Keywords o Algebra; Mathematical connections; Solution strategies; Preservice secondary mathematics
teachers

Resumen o Este estudio investigd las conexiones matematicas encontradas en las soluciones proporcio-
nadas por 22 futuros profesores de matematicas de secundaria a un conjunto de problemas de algebra. El
interés y la investigacion sobre las conexiones matematicas han ganado importancia en la tltima década.
Se utiliza la Teoria Extendida de las Conexiones Matematicas o ETMC para explorar los tipos de conexiones
que este marco captura y no captura en las soluciones de los futuros profesores. El ETMC revel6 cuatro tipos
de conexiones matematicas en cuatro problemas: “representaciones diferentes”, “procedimiento”,
“parte-todo” y “significado”. Los otros tipos de conexiones definidas en ETMC, como “reversibilidad” o
“caracteristica”, no se encontraron en nuestros datos, quizas debido a los problemas especificos que se
utilizaron. Algunas conexiones matematicas no se pusieron de manifiesto al examinar las soluciones a tra-
vés de ETMC (“significado”, “implicacién o si/entonces” y modelado), mostrando areas en las que ETMC
podria tener una capacidad limitada para ayudar a los investigadores a identificar conexiones matematicas
en diferentes contextos.
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Mathematical Connections in Preservice Secondary Mathematics Teachers’

1. INTRODUCTION

Historically, the mathematics education community agrees on the role and im-
portance of making connections in the teaching and learning of mathematics. Na-
tional curricula in many countries including the USA (Common Core State Stand-
ards, 2022), Australia (Australian Curriculum, Assessment and Reporting Author-
ity, 2022), and England (Department for Education, 2021) emphasise mathematical
connections. The crux of this interest is identifying the connections that one es-
tablishes in doing mathematics. However, how exactly one can do this and what
mathematical connections one establishes have been difficult to determine. Re-
searchers interested in this question have pursued different paths. Businskas
(2008) identified several types of mathematical connections based on the empirical
data on the topic of quadratic functions and equations. Other researchers widely
used these and have also identified additional types of mathematical connections.
These efforts have resulted in the generation of several frameworks to help re-
searchers to examine the proficiencies of students or teachers in making mathe-
matical connections in the learning or teaching of mathematics.

One such specific framework is the Extended Theory of Mathematical Con-
nections (ETMC; see Rodriguez-Nieto, Font et al., 2022). Any framework like
ETMC, however, has a particular lens through which it views connections, and
there are likely other connections in an individual’s mathematical work that are
not captured by ETMC. This paper reports on part of a larger study wherein a sam-
ple of preservice secondary mathematics teachers were supported to enhance their
mathematical proficiencies in teaching algebra. We aim to examine the mathemat-
ical connections apparent in the preservice secondary mathematics teachers’ so-
lutions to a set of algebra problems by applying the ETMC to their solution strate-
gies. By analysing these, we contextualise what types of connections ETMC makes
salient, and by looking within and across problems, as well as at correct and incor-
rect responses, we illuminate types of connections that ETMC does not bring to
light.

2. MATHEMATICAL CONNECTIONS

A mathematical connection can be defined as ‘a cognitive process through which a
person relates two or more ideas, concepts, definitions, theorems, procedures,
representations and meanings with each other, with other disciplines or with real
life’ (Garcia-Garcia & Dolores-Flores, 2018, p. 229). Mathematical connections
typically emerge when an individual develops written and/or oral arguments to
mathematical tasks (Garcia-Garcia & Dolores-Flores, 2018).

The literature on mathematical connections is vast. For example, the research
conducted by Eli et al. (2011) explored mathematical connections made by prospec-
tive middle-grades teachers. Their exploration highlighted the dominant presence
of procedural and categorical connections within the teachers’ mathematical dis-
course. The findings emphasised the essential role of varied connections in shaping
the teachers’ pedagogical approaches and underscored the significance of foster-
ing a deeper comprehension of the underlying relationships among different
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mathematical concepts. Dolores-Flores et al. (2019) conducted an analysis of the
mathematical connections forged by pre-university students while engaging in
tasks related to rates of change. By exploring the dynamics of these connections,
the researchers shed light on the underlying cognitive processes involved in the
students’ comprehension of mathematical concepts, emphasising the significance
of procedural connections in the students’ mathematical reasoning and problem-
solving strategies.

Garcia-Garcia and Dolores-Flores (2021) delved into the mathematical con-
nections established by pre-university students in solving challenging calculus ap-
plication problems. The researchers identified five distinct types of intra-mathe-
matical connections prevalent among the students. The study not only clarified the
various categories of connections but also underscored the critical role of these
connections in shaping the students’ understanding and application of calculus
concepts. The research emphasised the pressing need for targeted engagement
aimed at enhancing the students’ visualisation capabilities and fostering the de-
velopment of their making connections skills. The findings offered crucial insights
into the cognitive processes involved in mathematical problem-solving and high-
lighted the significance of promoting a holistic understanding of mathematical
concepts among pre-university students.

By closely examining the nature of connections, Dogan et al. (2022) shed light
on the intricate cognitive processes underlying students’ comprehension and uti-
lisation of linear algebra in various mathematical contexts. The authors high-
lighted the diverse categories of connections exhibited by students and emphasised
the critical role played by these connections in shaping the students’ overall un-
derstanding of complex mathematical concepts and mathematical proofs. The
study offers insights for educators into how to enhance their teaching strategies to
effectively convey mathematical concepts such as linear independence.

2.1. Extended Theory of Mathematical Connections or ETMC

The review of recent research highlights the necessity of the ETMC to comprehen-
sively understand mathematical connections, the foundations of which are:

Different Representations: Connections established between different repre-
sentations of mathematical concepts, fostering a deeper understanding of
their interrelated nature.

Procedural: Connections formed based on the step-by-step procedures in-
volved in mathematical operations or problem-solving.

If-Then: Connections derived from logical sequences and relationships, ena-
bling one to draw conclusions based on conditional relationships between
mathematical ideas.

Part-Whole Connections: Connections highlighting the relationship between
different components or parts of mathematical concepts, fostering a compre-
hensive understanding of their interconnections.
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Feature/Property: Connections centred around the essential features or prop-
erties of mathematical concepts, enabling one to grasp the fundamental
characteristics and attributes that define these concepts.

Instruction-Oriented Connections: Connections emphasising the relationship
between instructional strategies and the comprehension of mathematical
concepts, highlighting the significance of effective teaching methodologies
in facilitating students’ understanding (for a review and the origins of these
definitions see Hatisaru, 2023).

Several authors have contributed to the development of this extended theory,
emphasising the need to refine existing models to accommodate new types of con-
nections and deepen the study of mathematical connections in various educational
contexts.

Rodriguez-Nieto, Rodriguez-Vasquez et al., (2022), for example, contributed
to the advancement of the existing model for mathematical connections by intro-
ducing a novel category known as metaphorical connections (also found in Ha-
tisaru, 2022). This addition to the model was instrumental in refining the concep-
tual framework, aiming to enhance the clarity and comprehensiveness of the cat-
egories within the model. The works by Rodriguez-Nieto, Font et al. (2022) and
Rodriguez-Nieto et al. (2023) showcased the potential of a networking of theories
between the ETMC and the onto-semiotic approach. Their combined approach
provided a comprehensive analytical framework for understanding the intricate
nature of mathematical connections.

In sum, several recent studies collectively stress the significance of ETMC,
emphasising the need for a more comprehensive understanding of the intricate re-
lationships between various mathematical concepts. As educators and researchers
continue to explore and expand the boundaries of this extended theory or ETMC, it
is expected to enhance the overall understanding of mathematical connections and
their implications for effective teaching and learning of mathematics.

2.2. Research aims and questions

Previous research provides empirical support regarding the validity of ETMC (e.g.,
Rodriguez-Nieto, Font, et al., 2022; Rodriguez-Nieto et al., 2023) and its potential
to investigate teachers’ ability to establish connections in teaching mathematical
concepts (Hatisaru, 2023). Previous research, however, has not intentionally ex-
amined the affordances and limitations of ETMC in capturing mathematical con-
nections in solving mathematical problems. We use the ETMC to investigate the
mathematical connections in a sample of preservice secondary mathematics
teachers’ solutions to four algebra problems and ask:

1) What are preservice secondary mathematics teachers’ abilities for solving
algebra problems? What solution strategies do they use?

2) What mathematical connections are highlighted by examining the solution
strategies using the extended theory of mathematical connections? What
mathematical connections are not captured?
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It is inevitable that the features of the ETMC would be influenced by the
mathematical domains and populations used in prior studies. Common mathemat-
ical domains for prior investigations of mathematical connections have included
derivatives, linear algebra, rates of change, and calculus application problems.
Here, we study mathematical connections that are visible in initial teacher educa-
tion students’ solutions to open-ended contextual problems within the domain of
algebra.

3. METHODS

3.1. Context of the study and participants

The data presented in this paper come from a research study conducted by the first
author at a metropolitan university in Western Australia, in 2022. Data were col-
lected during classes within the Bachelor of Education (B.Ed.; lasts four years) and
Master of Teaching (MTeach; takes two years) degrees units. Both degrees aim to
equip students with the necessary knowledge and skills to teach Years 7 to 12 math-
ematics in secondary schools.

The second-year B.Ed. (5 Female and 6 Male) and the first-year MTeach (4
Female and 8 Male) students enrolled in the two mathematics education units of-
fered in Semester 2 were invited to participate in the study; all agreed. Participation
was purely voluntarily, and students’ informed consent was obtained for their so-
lutions to be used for research purposes. In both units, the teaching and learning
activities are designed around the content strands of Number and Algebra, Statis-
tics and Probability, and Measurement and Geometry, with special coverage of
problem-solving.

3.2. Data generation

For six weeks during Semester 2, the students undertook problem-solving activi-
ties (one each week) as part of their Number and Algebra learning activities. We use
four of the problems, those which are worded algebra problems. At the commence-
ment of each class, the students were provided with a reflection form containing
the problem and three prompt questions, which they completed in 20-25 minutes.
Because the problems were done on different days, not all students did all four
problems. The data for this paper is the responses to the first prompt question:

Think and explain as many different possible solutions to the problem as you
can. Name the solutions as Solution A, Solution B, Solution C and so on.

3.3. Problems used

The four problems are referred to in this paper as DICE, FARMER, ANY TWO NUM -
BERS, and BOOKS. All these problems can be solved in a variety of ways; they there-
fore allow us to examine the solution strategies generated, and what mathematical
connections are manifested in them. They could be posed to students in lower sec-
ondary school. It is expected that preservice secondary mathematics teachers are
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familiar with multiple ways of solving these problems and recognise their differing
efficiency.

DICE: Die A and Die B have twelve sides each. Suppose that you roll die A and
die B at the same time. When do the dice satisfy the following two conditions?
The sum of 2 times A plus B equals 15. 3 times A minus B equals 5. (Ito-Hino,

1995)

FARMER: A farmer had 19 animals on his farm — some chickens and some
cows. He also knew that there was a total of 62 legs on the animals on the
farm. How many of each kind of animal did he have? (Tripathi, 2008)

ANY TWO NUMBERS: If you are given the sum and difference of any two num-
bers, show that you can always find out what the numbers are. (Kieran, 1992)

BOOKS: You have some teen and young adult books. You gave one-half of the
books plus one to a friend, one-half of the remaining books plus one to an-
other friend, and one-half of the remaining books plus one to another friend.
If you have one book left for you, how many books did you have at the start?
(Adapted from Musser et al., 2008)

The statement of DICE comes very close to supplying the two simultaneous
equations in two unknowns (A and B). FARMER can also be solved by identifying
two unknowns (numbers of chickens and cows), then setting up and solving two
simultaneous equations, or by noting immediately that the number of chickens is
19 minus the number of cows so that only one equation in one unknown (the num-
ber of cows) needs to be solved. Solution paths based on guess-check-and-improve
or logical arithmetic reasoning (Stacey & MacGregor, 1999) are viable, too. A solu-
tion based on logical arithmetic reasoning can be:

Give each of the 19 animals 2 legs. That requires 19 x 2 = 38 legs. You must give
out more legs (62 — 38 = 24), so you need to give extra legs to 24 + 2 = 12 ani-
mals. That is, there are 12 cows, and hence 7 chickens.

ANY TWO NUMBERS can be set up as two simultaneous linear equations in
two unknowns (the original numbers), but, in this case, there are additionally two
parameters involved (the sum and difference) demanding higher algebraic compe-
tence than the other problems. Guess-check-and-improve solutions might be used
as part of a ‘look for a pattern’ strategy — students may choose sum and difference
pairs, find the numbers and then look for a pattern linking them. BOOKS can be
solved algebraically, by writing five simple linear equations in five unknowns
(original number of books, number after gift 1, etc.), or by writing just one equation
in one variable by immediately building the stated relationships into the equation.
Guess-check-and-improve is also a feasible method. The simplest solution is to
work backwards from the one book remaining, through the various steps to the
start, using logical arithmetic reasoning.

3.4. Data analysis approach

The participants’ solutions to the relevant problems were content analysed by two
authors of this paper (Hatisaru and Stacey), both of whom have extensive expertise
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in these types of data analyses (Hatisaru, 2023; Stacey & MacGregor, 1999). One of
the participant’s solutions to all four problems were weak; although this partici-
pant sometimes gave the correct answer, their working was chaotic, messy, and
difficult to understand. This participant’s data were therefore not included in data
analysis. The remaining 22 participants’ data were analysed; each participant was
assigned a code: P1, P2, P3, P4, P5, ... to protect their anonymity. The total number
of responses to the prompt over the 4 problems was 70, with 18 absences. In total,
the responses of these 22 participants gave 128 solutions to the four problems —
an average of 1.8 solutions per participant present per problem. We label these as
‘solutions’, whether they are correct or incorrect, completely, or incompletely im-
plemented, or only suggested.

After examining the participants’ solutions, the success rate for each problem
was determined. Here, success on a problem means the participant presented at
least one correct solution with a correct answer.

To find out how the participants approached to the problems, all 128 solutions
were recorded. Based on extensive discussions and several iterations, the strategies
emerging in participant solutions were identified and classified into the eleven cat-
egories presented in Table 1. Examples are presented in Figures 1 to 3 to illustrate
this categorisation; strategies apparent in them are noted in UPPER CASE. Next,
participants’ strategies categorised into the groups presented in Table 1 were ex-
amined based on the mathematical connections defined in ETMC. Please note that
within a single strategy, there can be multiple mathematical connections, as also
suggested by Mhlolo (2013). Furthermore, our method examines the ‘within strat-
egy’ connections made by a participant, rather than ‘between strategy’ connec-
tions that might be observed by studying all the solutions of one participant.

Table 1. Strategies emerging in participant solutions and their description

Strategy Description

Algebraic

equations, symbolic

solving Write algebraic equations and solve using standard algebraic method.

equations, numerical

. Write algebraic equations and solve numerically.
solving

equations, graphical

. Write algebraic equations and plot to find the intersection point.
solving

equations, using param-  Write algebraic equations with two unknowns and with two parameters
eters, symbolic solving and solve using standard algebraic methods.

equations, using param-  Write algebraic equations with two unknowns and with two parameters
eters, numerical solving  and solve for a specific example.

equations, no parame- Write algebraic equations with two unknowns but with two specific num-
ters, symbolic solving bers and solve using standard algebraic methods.

Write algebraic equations with two unknowns and with selected specific
equations, pattern sums and differences, solve using any method and look for a pattern link-

ing solutions to sum and difference.
equations, vectors Draw on ideas of vector algebra and change of basis (alternative axes).
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Strategy Description

Numerical

Use a numerical path in a systematic way such as guess-check-and-im-

numerical, systematic prove or guess-and-check with tables.

numerical, unsystematic  Use apparently random guess-and-check

logical arithmetic rea- Think about the relations between the numbers/quantities involved and
soning work from known numbers towards the solution.
4. RESULTS

4.1. Success rate and solution strategies

Table 2 summarises the numbers of participants whose best solution was ‘correct’,
‘partially correct’, or ‘incorrect’ for each of the four problems, as well as the num-
ber of participants ‘absent’. ‘Partially correct’ was only used as a code for ANY TWO
NUMBERS problem to record when participants gave a correct solution to a specific
case, without generalising the solution to any sum and difference. 61 of the 70 re-
sponses included a correct answer by at least one method (87%).

Table 2. The success rate for each problem among 22 participants

Problem Correct E;?f:;ggg’ Incorrect  Absent *Percg(r)llfraetctf mpts
DICE 15 - 3 4 83%
FARMER 19 - - 3 100%
BOOKS 12 - 1 9 92%

*Percentage of those students were present in the class who gave a correct answer.

Whilst most participants’ answers to DICE were correct (P20, Figure 1), three
participants’ answers were incorrect. These participants failed to recognise the
need for simultaneity, or perhaps they misinterpreted the question, thinking it had
two separate parts. BOOK was solved incorrectly by only one participant; all others
solved it correctly (P6, Figure 2). All participants present solved FARMER correctly
(P2, Figure 1). ANY TWO NUMBERS was relatively difficult; out of 20 participants
who undertook the problem, fifteen gave a complete solution to the problem (P14,
Figure 2), three used single numerical examples rather than parameters (P17’s So-
lution A in Figure 3, left); the remaining two participants’ responses were incorrect
(P10, Figure 3, right).

All but five participants gave at least one correct solution for every problem
they attempted. This suggests that the algebraic competence of these five students
was limited. We refer to these erroneous solutions where relevant to provide sup-
porting evidence for the mathematical connections that were established or
missed.
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Figure 1. Sample solutions to DICE and FARMER
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a small slip, not detracting from the use of LAR or logical arithmetic reasoning.

Figure 2. Sample solutions to ANY TWO NUMBERS and BOOK
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Figure 3. Further sample solutions to ANY TWO NUMBERS
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The number of strategies that were apparent in the participants’ solutions are
presented in Table 3. Out of the 128 solutions generated, 13 are suggested without
showing any implementation. Most of these are numerical approaches where stu-
dents wrote ‘guess-and-check’ or ‘table’. As no other detail is provided around
how guess-and-check and table methods could be implemented, it is unknown
whether they are systematic or not. Out of 115 solutions implemented, 11 gave incor -
rect answers, 7were incomplete, and the remaining 97 were implemented correctly
(84%).

The participants generated the same total number of solutions for DICE and
FARMER (34 each, including similar numbers of incomplete/erroneous), 29 solu-
tions for ANY TWO NUMBERS and 18 solutions for DICE. However, the percent of
solutions correct for each problem is almost the same (82%, 85%, 86%, and 83%.).
This indicates that, overall, the participants knew the different ways of solving
these problems and were mostly able to execute them correctly.
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Table 3. Strategies manifested in participant solutions

Problem Implemented (115 solutions) Suggestg d (13 solu-
tions)
. incomplete (7 solu- erroneous (11 solu-
complete (97 solutions) tions) tions)
Equations, symbolic solving
(17) Equati . Equations, symbolic
. . . . quations, numerical .
Equations, numerical solving  Numerical, system- solving (2) solving (2)
DICE (7) atic (1) . Numerical [suggested
. . . Numerical, system-
Equations, graphical solving atic (3) guess-and-check (4)
1) table (2)]
Numerical, systematic (3)
Equations, symbolic solving
(20) . : .
E . . . Logical arithmetic
quations, numerical solving . . . . .
FARMER 1) reasoning (1) Loglcal‘ arithmetic Numerical [suggested
. . Numerical, system- reasoning (1) guess-and-check (1)]
Numerical, systematic (6) -
: : . : atic (3)
Logical arithmetic reasoning
(2)
Equations, using parameters,
symbolic solving (16) )
Equations, no parameters, Numerical, unsys- eE‘?eurztlso nrfl’brcl)(l)ig asf)all\rlli_ Equations, symbolic
ANY TWO symbolic solving (5) tematic (2)’ v ‘n (1’) y solving (1)
NUMBERS  Equations, using parameters, N B\ 1 _ Numerical [suggested
numerical solving (1) trmerical, unsys guess-and-check (2)]
. tematic (1)
Equations, pattern (2)
Equations, vectors (1)
E i lic solvi
(1%1;at10ns, symbolic solving Equations, symbolic
lving (2 i
BOOKS Logical arithmetic reasoning - solving (2) Numerical [suggested

(4)

Numerical, systematic (1)

Equations, numerical
solving (1)

guess-and-check (1)]

4.2. Mathematical connections apparent in participant strategies

4.2.1. Connections of ‘different representations’ type

To solve a problem by algebra, one makes connections with the problem statement
to identify variables and relationships to formulate the equation(s) and then one
uses procedural algebra, usually involving arithmetic, to get the solution. However,
if one solves a problem numerically (e.g., guess-check-and-improve), one directly
connects the relationships, stated verbally, to a sequence of numerical operations.
So, the different solution strategies have different connections.

Relevant to this study, it was considered that both the verbal-algebraic con-
nection when setting up equations, and the verbal-numerical connection when
finding numerical relationship belong to the ‘different representations’ type of
connection. For example, as shown in Figure 1, in solving DICE, P20 generates both
‘equations, symbolic solving’ and ‘equations, numerical solving’ strategies. In
solving FARMER, P2 generates three strategies: ‘equations, symbolic solving’,
‘logical arithmetic reasoning’, and ‘numerical, systematic’ (Figure 1). The logical
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arithmetic reasoning also requires a verbal-numerical connection between the
words and the numerical relationships. Most participants showed similar behav-
iour. Using the data in Table 3, we considered these strategies as involving ‘verbal -
algebraic’ and ‘verbal-numerical’ connections, respectively (Table 4). As might be
expected of student secondary mathematics teachers, verbal-algebraic connec-
tions were made more often (90 occurrences; 70%) than verbal-numerical (38 oc-
currences; 30%) connections.

Table 4. Connections of different representations type evident in the participants’ solu-
tions (total 128)

DICE FARMER ANY TWO NUMBERS BOOKS

verbal-algebraic (29) verbal-algebraic (21) verbal-algebraic (27)  verbal-algebraic (13)
verbal-numerical (13)  verbal-numerical (14)  verbal-numerical (5) verbal-numerical (6)

4.2.2. Connections of ‘procedural’ type

Some of the participants used the elimination and/or substitution method to solve
the linear simultaneous equations that they set up in solving DICE, FARMER, or
ANY TWO NUMBERS. It was considered that the procedural type of connection oc-
curs when these standard procedures are employed. All ‘equations’ solutions for
BOOKS used only one variable equations with standard solving methods. Table 5
presents the distribution of this type of connection across the four problems.

Table 5. Procedural type of connections evident for solving equations

DICE FARMER ANY TWO NUMBERS BOOKS
elimination (10) elimination (9) elimination (9) solving one variable
substitution (9) substitution (11) substitution (9) equations (13)

4.2.3. Connections of ‘part-whole’ type

Part-whole connection is particularly relevant to ANY TWO NUMBERS which re-
quires a formulation using parameters because both the two original numbers and
their sum and difference are unspecified. In ANY TWO NUMBERS, sum and differ-
ence can be exemplified as any two numbers to find the original numbers, but this
relationship must be generalised to all numbers as the chosen two numbers are only
a particular case of the whole situation.

Table 6. Connections of part-whole type evident (or not) in solutions for ANY TWO
NUMBERS (total 32)

Evident (20) Not evident (9) Unknown (3)
equations, using parameters equations, no parameters, sym-
equations, pattern bolic/numerical solving suggested strategies
equations, vectors numerical, unsystematic
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Based on the data presented in Table 3, and as summarised in Table 6, out of
32 solutions for ANY TWO NUMBERS, part-whole connection was evident in total
of 20 (63%) where a logical relationship was established between general and par-
ticular cases. It is unknown whether this connection would be made in 3 suggested
solutions without implementation (9%). In the remaining 9 solutions (28%) this
connection was missed. For example, P20 chose 15 and 10 as the sum and difference
of two numbers and found the original numbers: 12.5 and 2.5 (Figure 4, left). They
did not note that the solution based on a single example cannot be a generalisation
of the situation.

P14 specified the sum and difference of any two numbers such as a and b being
5and 3 (a + b =5,a — b = 3), found the original numbers by solving the equations (a
= 4,b=1),but as opposed to P20, they recognised that 5 and 3 was only one example
by stating: ‘then try different values at two results a + b and a — b’. Furthermore,
they generalised the solution to all numbers in their second solution by using pa-

rameters for sum and difference: a = yT” , b= xzi , and concluded the solution as:

‘knowing x and y can find a and b’ (see Figure 2, left). Similarly, P7 and P8 made a
relationship between a whole and its part. As shown in Figure 4 (right), P7 chose
two numbers: 136 and 244, calculated their sum and difference: 380 and 108, and
showed the relationship between them: half of the sum of sum and difference is
244, half of the difference between sum and difference is 136 — that is, the two
original numbers. They next generalised this relationship to any numbers. In this
way, they recognised that the pair 136 and 244 was only a particular example of the
whole.

Figure 4. P20's (left) and P7’s (right) solutions to ANY TWO NUMBERS
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4.2.4. Connections of ‘meaning’ type

Within ETMC, there are two different types of meaning connections: (a) connec-
tions related to the meaning of a mathematical concept or definition and (b) con-
nections related to different meanings of a mathematical concept that are useful
for solving a given problem (see Rodriguez-Nieto et al., 2023).

In this study, one participant suggested a vector approach to solve ANY TWO
NUMBERS (Solution B in Figure 5); by drawing on mathematics of change of basis
and orthogonal projections of a point onto two different sets of axes. We find this
as a unique meaning type of mathematical connection: connecting a problem to
more advanced mathematical theory.

Figure 5. P17’s 2 solutions to ANY TWO NUMBERS
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4.3. Mathematical connections not captured by ETMC

Through our analysis, we noted mathematical connections that do not readily fit
into the ETMC types.

4.3.1. Connections of ‘meaning’ type

We believe there seem to be additional types of meaning connections. For example,
meaning connections can be understanding the situation to representing it math-
ematically or including some feature of the situation into the solution. Further-
more, meaning connections can be intra-mathematical meaning, such as recog-
nising the involvement of a mathematical principle or feature.
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DICE, FARMER, and ANY TWO NUMBERS include the idea of simultaneity or
constraints. DICE was used in a series of lessons where school students were intro-
duced the ‘meaning’ of simultaneity, and they were gradually introduced simulta-
neous equations, along with formal algebraic procedures to solve them such as
elimination and substitution methods (Ito-Hino, 1995). When solving these prob-
lems, the participants recognised the idea of simultaneity and used its meaning in
their solutions (P12, Figure 6). As this would not fit in how connections of meaning
type are defined in ETMC, we have not counted these situations as meaning con-
nections. It means that such connections of meaning type are not brought out when
the existing ETMC framework is applied.

Figure 6. P12’s 2 solutions to DICE (left) and P18'’s one of the 3 solutions to BOOKS
(right)
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4.3.2. Connection of ‘implication or if-then’ type

In carrying out any mathematical work, there are line-by-line links that must be
made. For example, quoting Mhlolo (2013): ‘if 2x = 10 (the premise) then x = 5 (the
logical conclusion). Similarly, if A is a polygon whose interior angles add up to 180°

then A is a triangle’ (p. 180). Are these small-scale implications properly called
connections in ETMC and if not, why not?

Implication is a fundamental act of reasoning, involved in every step of a
mathematical solution as we move from premise to conclusion. Whilst there was a
wealth of implication or if-then statements in the participants’ solutions (P18,
Figure 6), in agreement with ETMC, our study had to choose a ‘grain size’ for im-
plication connections to produce useful results. We decided, for example, that car-
rying out algebraic manipulation and doing arithmetic would not be classed as

making connections. Other studies with other populations of participants would
make other choices.
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4.3.3. Connections of ‘modelling’ type

Modelling connections are not in the ETMC studies in general. We assume that it is
because this framework is concerned only with intra-mathematical connections.
However, in a much recent work employing ETMC, where mathematical connec-
tions made by one teacher and a sample of university students when solving a
problem about launching a projectile were explored, modelling connection was de-
fined as connections where a link is made between mathematics and the daily life
of students. This connection is considered evident when one solves a non-mathe-
matical (or application) problem where they need to pose a mathematical model
(see Rodriguez-Nieto et al., 2023).

In solving DICE, there was one instance where a student made a different
‘modelling’ connection to the one intended. The question specified the dice had
twelve sides, but the writer of the question and most students assumed that this
meant that the numbers 1 to 12 appeared on the sides. The question did not specify
the intended interpretation clearly. This student assumed the numbers were only
{1, ..., 6} thus had made a different modelling connection — a different way of link-
ing the real-world statement about a die to the mathematical world statement
about the range of numbers to be considered. In a similar vein, another student
noted that there would be no solution if there were pictures rather than numbers
on the dice. In problem solving attempts, there can be missing modelling connec-
tions and incorrect connections; in this case, we think it is reasonable but different.
Even if the ETMC framework is primarily intended to be for intra-mathematical
work, modelling connections can influence any mathematical work related, even
trivially, to any real-world context. The problems in this study had a real-world
setting used simply as a ‘border’ (Stillman, 1998) and not intended to be taken se-
riously, but still the influence of connections to the real world was evident.

5. DISCUSSION AND CONCLUSIONS

Our first research question concerned preservice secondary mathematics teachers’
(hereafter PSMTs) strategic competence for solving the given open-ended algebra
problems. Recall that PSMTs were asked to solve each of the four problems in as
many ways as possible. Our results indicate that these PSMTs were generally able
to solve all four problems successfully. 61 of the 70 responses included a correct
answer using at least one method. 17 of the 22 participants gave at least one correct
solution for every problem they attempted, and many were able to generate more
than one correct solution for the problems. These findings indicate that the four
problems used in the study were at an appropriate level for these PSMTs to suc-
cessfully engage with, and thus their solutions provide us with reasonable data
from which to analyse mathematical connections evident in solutions to algebra
problems typically encountered in the secondary mathematics (algebra) curricu-
lum.

Our second research question concerned the types of mathematical connec-
tions evident in PSMTSs’ solutions to these four problems, and we utilized the Ex-
tended Theory of Mathematical Connections or ETMC to seek out these types of
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connections. To a large degree, the ETMC framework was quite useful in analysing
teachers’ solutions. This framework highlighted ‘different representations’ and
‘procedural’ types of connections in teachers’ strategies across all four problems,
as well as ‘part-whole’ and ‘meaning’ connections for one of the problems. The
other types of connections defined in ETMC including ‘reversibility’ or ‘feature’
(e.g., Rodriguez-Nieto, Font, et al., 2022) were not found in our data, perhaps be-
cause of the specific problems that we chose to use here.

We were also interested in types of connections present in PSMTSs’ strategies
that did not fall within any of the existing ETMC connection types. In particular, we
found types of ‘meaning’ connections that did not appear to be included in ETMC.
Within ETMC, there are two different types of ‘meaning’ connections (see Section
£4.2.4). In our data, we found previously-unaccounted-for ‘meaning’ connections
related to the ways that a situation is represented mathematically, as well as con-
nections involved in the recognition of a mathematical principle or feature within
a problem context. In addition, we found connections where PSMTs made a link
between mathematics and real life — a connection that was useful in helping them
mathematise and solve these contextual problems. These types of modelling con-
nections are also not currently present in ETMC (see an exception in Rodriguez-
Nieto et al., 2023).

Our consideration of the affordances and constraints of ETMC for identifying
connections also surfaced several other questions about this framework—and by
extension other existing frameworks for identifying connections—that would be
useful for researchers interested in mathematical connections to consider in future
work. First, our analyses raised questions about ‘meaning’ connections. The ETMC
framework identifies some types of connections related to meaning, but our data
surfaced some additional ‘meaning’ connections. As currently conceived by the
ETMC framework, ‘meaning’ connections take specific forms. But it is not difficult
to imagine a much broader set of possible and additional ‘meaning’ connections,
including the two documented in our data. In addition, ‘meaning’ —and meaning-
making—seems to play an implicit role in other types of connections. ‘Fea-
ture/property’ connections occur when a learner makes meaning of a mathemati-
cal concept; ‘analogy’ connections involve meaning-making links between math-
ematical concepts and real-world situations (Hatisaru, 2022). Is the ‘meaning’
type of connections so broadly conceived that it functions as an ‘other’ code, cap-
turing a very broad array of types of connections that do not otherwise fall into any
existing ETMC category? Are ‘meaning’ connections a meaningful component of
connections frameworks such as ETMC, or is this type of connections too broad and
diverse such that it may be meaningless?

Second and related, our analyses made it apparent that different types of con-
nections have different grain sizes. The ‘meaning’ type of connection, as noted
above, had the potential to become quite broad and indicative of macro connec-
tions. But other connection types more naturally lend themselves to smaller grain
sizes and micro connections. Extremes in either direction seem potentially prob-
lematic. For example, if a connection is too narrowly conceived, could this mean
that every statement made by a learner, or even every word uttered, could be
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indicative of some type of connection? When too broadly conceived, might it be
necessary to identify sub-connections within a single connection or type of con-
nection? Furthermore, should all types of connections within a framework be ap-
proximately the same grain size? If so, how should this optimal grain size be de-
termined?

Third, our investigation raised questions about whether it might be possible
or useful to make qualitative determinations about the connections made by learn-
ers. Are all connections or types of connections equally valid or important, or are
some connections more important or better than others, for a given problem, in-
dividual, or problem-solving circumstance or context? Should a framework for
identifying connections note which connections are especially innovative or rou-
tine? We think, in particular, of P18’s unique and unexpected vector solution to the
ANY TWO NUMBERS problem (Figure 5). Perhaps all connections, even within the
same type, are not equal; perhaps connection frameworks should incorporate
qualitative features (and not exclusively types) that help distinguish among con-
nections? Consistent with this idea, Mhlolo (2013) developed an analytical tool that
can be used to determine the quality of following the connections made in practice.
A Likert scale from Level 0 (connection made was mathematically erroneous) to
Level 3 (connection made was mathematically acceptable and justified) was em-
ployed. Pilot testing of it on 20 lessons delivered by four Grade 11 teachers revealed
that the analytical tool developed has potential to identify the strengths and weak-
nesses of mathematical connections made in a lesson.

Finally, given our focus here on an analysis of PSMTs’ multiple solution strat-
egies, we wonder about the ways that a strategy lens and a connection type lens
might be in conversation with each other. A unique feature of the present study was
the fact that teachers were asked to solve the same problem in multiple ways. Our
method for looking at connections was to look within each strategy for the connec-
tions that were made. This means that connections (other than implications) were
likely to be made between stages of a single solution strategy, such as moving from
a verbal description to a mathematical description, then solving the intra-mathe-
matical problem that arises. Or similarly, the different representations type of con-
nection usually related to moving from the verbal statement to the mathematical
formulation with a single strategy. This way of looking for connections does not
identify those connections that one student knows between different ways of solv-
ing a problem. For example, many participants in the present study solved the sim-
ultaneous equations by substitution in one solution, and then by elimination in a
second. The fact that the participants made an implicit connection between these
two strategies (i.e., realising that they both accomplish the same goal) has not been
identified here. That is, our method has drawn attention to ‘within strategy’ con-
nections, rather ‘between strategy’ connections. Furthermore, our ability to elicit
these types of connections is dependent on a particular artifact of this study’s
method, where students are asked to solve problems in multiple ways, but the mul -
tiple ways are not analysed together.

To conclude, examining PSMTs’ solution strategies through the ETMC lens
afforded insight into connections-related aspects of solving the algebra problems.
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We noted the extent to which teacher solutions afforded mathematically rich pro-
ductions for discovering the strategies used, the degree to which solutions included
mathematical errors and imprecisions, the degree to which teachers made connec-
tions or missed making connections, and the extent to which the ETMC framework
did or did not capture the connections available. We were not interested in using
the framework to assess PSMTs’ capability for making connections, and indeed this
would be inappropriate given that we only had their responses to a written instru-
ment. Rather, we believe that examining these solutions using ETMC provides rich
information regarding making connections along the connection types defined in
ETMC. We simultaneously acknowledge that there are aspects of making mathe-
matical connections not highlighted through the choice of this particular study de-
sign or this particular framework. These insights are particularly important as one
considers how this framework, or any similar instrument, can be used as a tool for
working with teachers (both preservice and practising) to improve their teaching
or supporting teachers to critically analyse and reflect upon their capabilities of
making connections.
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Conexiones matematicas en las estrategias de
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Investigaciones previas proporcionan apoyo empirico respecto a la validez de la
Teoria Extendida de Conexiones Matematicas o ETMC (ver Rodriguez-Nieto, Moll
et al., 2022) y su potencial para investigar la capacidad de los individuos para esta-
blecer conexiones en la ensefianza o el aprendizaje de las matematicas. Sin em-
bargo, estas investigaciones no han examinado intencionalmente las posibilidades
y limitaciones del ETMC para capturar conexiones matematicas en la resolucion de
problemas matematicos. En este articulo, utilizamos el ETMC para investigar los
tipos de conexiones que este marco captura y no captura en una muestra de 22 so-
luciones de 22 futuros profesores de matematicas de secundaria (PSMT) a cuatro
problemas de algebra.

El namero total de respuestas a la pregunta a lo largo de los cuatro problemas
fue de 70, con 18 ausencias: Piensa y explica tantas soluciones posibles al problema
como puedas. Nombra las soluciones como Solucion A, Solucion B, Solucion C, etc.. En
total, las respuestas de estos 22 participantes aportaron 128 soluciones a los cuatro
problemas, un promedio de 1.8 soluciones por participante y problema. Para averi-
guar cdmo abordaron los participantes los problemas, se registraron las 128 solu-
ciones. Se identificaron las estrategias que aparecian en las soluciones de los par-
ticipantes y se clasificaron en once categorias (por ejemplo, ecuaciones, resolucion
simbdlica; patrones; numérica, sistematica). A continuacion, se examinaron las es-
trategias de los participantes categorizadas en estas categorias en funcion de las
conexiones matematicas definidas en el ETMC.

Los resultados han mostrado que el ETMC revel6 cuatro tipos de conexiones
matematicas en cuatro problemas: “representaciones diferentes”, “procedi-
miento”, “parte-todo” y “significado”. Los otros tipos de conexiones definidas en
ETMC, como “reversibilidad” o “caracteristica”, no se encontraron en nuestros
datos, quizas debido a los problemas especificos que se utilizaron. Algunas cone-
xiones matematicas no se pusieron de manifiesto al examinar las soluciones a tra-
vés de ETMC (“significado”, “implicacion o si/entonces” y modelado), lo que
muestra areas en las que ETMC podria tener una capacidad limitada para ayudar a

los investigadores a identificar conexiones matematicas en diferentes contextos.

Examinar las estrategias de solucién de los PSMT a través del ETMC permitio
comprender los aspectos de la resolucion de problemas de algebra relacionados con
las conexiones. Se observo si las soluciones de los profesores ofrecian producciones
matematicamente ricas para descubrir las estrategias utilizadas. si las soluciones
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incluian errores e imprecisiones matematicas, si los profesores establecian cone-
xiones 0 no y si el marco ETMC capturaba o no conexiones disponibles. No nos in-
teresaba utilizar el marco para evaluar la capacidad de los PSMT para establecer
conexiones y, de hecho, esto seria inapropiado dado que solo teniamos sus res-
puestas en un instrumento escrito. Ademas, reconocemos que hay aspectos de las
conexiones matematicas que no se destacan a través de la eleccion de este disefio
de estudio o este marco en particular. Estas ideas son importantes ala hora de con-
siderar como este marco, o cualquier instrumento similar, puede usarse como una
herramienta para trabajar con los profesores (tanto en formaciéon como en ejerci-
cio) para mejorar su ensefianza o para apoyar a los profesores a analizar critica-
mente y reflexionar sobre sus capacidades para establecer conexiones.
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