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Abstract ∞ The aim is to understand how the students’ involvement in solving and discussing exploratory 
tasks, combined with the teacher’s actions, can contribute to the development of their mathematical rea-
soning (MR) in a Differential and Integral Calculus course. The study was qualitative, with an interpretive 
approach, and the participants were undergraduate engineering students. The data consists of (a) proto-
cols containing written records of students’ discussions; (b) audio recordings of these discussions; and (c) 
video of the plenary discussion facilitated by the teacher. We discuss the MR processes that students mo-
bilize, in particular conjecturing, generalizing, and justifying. We point out which of the teacher’s actions 
can contribute to the development of MR, in a continuous and growing movement, essentially related to 
the deepening of discussions based on elements presented by the students themselves, and the opportu-
nities that are created in this process. 

Keywords ∞ Mathematics Education; Teaching Differential and Integral Calculus; Mathematical Reason-
ing; Exploratory tasks 

Resumen ∞ El objetivo es comprender cómo la participación de los estudiantes en la resolución y discusión 
de tareas exploratorias, vinculada a las acciones del profesor, puede contribuir al desarrollo de su razona-
miento matemático (RM) en el curso de Cálculo Diferencial e Integral. El estudio fue una investigación cua-
litativa, y los participantes fueron estudiantes de ingeniería de educación superior. Los datos se componen 
de (a) protocolos que contienen registros escritos de las discusiones de estudiantes; (b) audios de estas 
discusiones; y (c) vídeo de la discusión plenaria mediada por el profesor. Discutimos los procesos de RM 
que movilizan los estudiantes, especialmente conjeturar, generalizar y justificar. Señalamos cuál de las 
acciones del docente puede contribuir al desarrollo del RM, en un movimiento continuo y creciente, rela-
cionado esencialmente con la profundización de las discusiones a partir de elementos presentados por los 
propios estudiantes, y las oportunidades que se crean en ese proceso. 

Palabras clave ∞ Educación Matemática; Enseñanza del Cálculo Diferencial e Integral; Razonamiento 
matemático; Tareas exploratorias 

 

Trevisan, A. L., Araman, E. M. de O & Serrazina, M. de L. (2023).  The development of students’ mathematical 
reasoning in Calculus courses. AIEM - Avances de investigación en educación matemática, 24, 39-56. 
https://doi.org/10.35763/aiem24.4326 

seiem.es 

https://www.aiem.es/
mailto:andreluistrevisan@gmail.com
mailto:eliane.araman@gmail.com
mailto:mlserrazina@ie.ulisboa.pt
https://orcid.org/0000-0001-8732-1912
https://orcid.org/0000-0002-1808-2599
https://orcid.org/0000-0003-3781-8108
https://www.seiem.es/
https://www.seiem.es/
https://creativecommons.org/licenses/by/4.0/deed.es


The development of students’ mathematical reasoning in Calculus courses 

40 AIEM (2023), 24, 39-56 

1. INTRODUCTION 

Differential and Integral Calculus (DIC) is a crucial component of the fundamental 
core of Exact Science programs in Brazil, particularly in Engineering, as it enhances 
the necessary reasoning processes for formulating and solving problems in various 
areas. It also aids in comprehending and validating phenomena through experi-
mentation and effective written, oral, and graphic communication (Brasil, 2019). 

However, the fundamental science importance is marred by high failure rates 
among engineering undergraduate students over the years. In addition to gaps in 
students' prior mathematical knowledge (Ghedamsi & Lecorre, 2021), students' 
failure in the DIC subject and subsequent program dropouts can be attributed to the 
didactic-pedagogical structure of engineering programs. The prevalence of a tra-
ditional teaching methodology that prioritizes lectures and teacher-centered in-
struction (Hieb et al., 2015) contributes to this issue (Thompson & Harel, 2021). De-
spite the progress made in theoretical frameworks for teaching and learning math-
ematics that have aided research in Higher Education, they fail to manifest in DIC 
classrooms (Lithner, 2008; Rasmussen et al., 2014). 

The current movement to revamp engineering teaching models, as exempli-
fied by Brazil's National Curriculum Guidelines for Undergraduate Courses (Brasil, 
2019), emphasizes the development of skills necessary for formulating and design-
ing innovative solutions, utilizing suitable techniques, communication, teamwork, 
and an investigative mindset that must be cultivated throughout the educational 
process. The development of technical and general skills is linked directly to guide-
lines stemming from research in Mathematics Education. Results indicate that 
teaching approaches that promote the development of students' mathematical 
reasoning (MR) through collaborative work, productive mathematical discussions 
(Stein et al., 2008; Rodrigues et al., 2018), and solving exploratory tasks (Ponte, 
2005) show promising potential. Therefore, it is essential to have a learning envi-
ronment with such features as outlined in the DIC (Trevisan & Mendes, 2018) to 
effectively teach Engineering in Brazil. When students engage in problem-solving 
tasks, it can trigger various cognitive processes of Mathematical Reasoning (MR) 
(Jeannotte & Kieran, 2017), where they form conjectures and proffer justifications, 
validations, or refutations (Lannin et al., 2011). 

The present article aims to understand how the involvement in solving and 
discussing exploratory tasks, linked to the teacher’s actions, can contribute to the 
development of MR in students of DIC courses. Based on the research aim and hy-
pothesis, we have the following questions i. What MR processes are mobilized by 
the students of the DIC course when solving tasks of an exploratory nature? ii. How 
do the teacher’s actions, working with the development of exploratory tasks in DIC 
courses, contribute to the students’ MR development? 

To accomplish this, we analyze the research on MR and its processes and ex-
amine the teacher actions that can facilitate it, such as introducing exploratory 
tasks. We present a theoretical framework outlining the function and mathematical 
content of the proposed tasks. Next, we introduce the study context and describe 
the methodological procedures employed. We subsequently analyze data collected 
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from three tasks proposed in DIC courses. Finally, we discuss the results, consider 
the proposed theoretical framework, answer the research questions, and highlight 
implications for teaching and research in DIC. 

2. THEORETICAL FRAMEWORK AND BACKGROUND 

The development of students’ MR is undoubtedly, a challenge for teachers of all 
levels of education (Niss, 2013). Despite the different theoretical approaches fol-
lowed to this topic, there is a consensus among researchers that MR — the dynamic 
process of conjecturing, generalizing, investigating why, and developing and eval-
uating arguments — is a fundamental skill in mathematical learning. 

Jeannotte and Kieran (2017) discuss the process aspect of MR related to the 
search for similarities and differences (generalizing, conjecturing, identifying a 
pattern, comparing, and classifying), and others related to validation (justifying, 
proof, and formal proving); in addition to these processes, and supporting them, 
exemplifying. Despite the relevance of all processes in the development of stu-
dents’ MR, in this work, we pay special attention to the processes of conjecturing, 
generalizing, and justifying, since they stand out as essential processes. 

According to Jeannotte and Kieran (2017), conjecturing is a “MR process that, 
by the searching for similarities and differences, infers a narrative about some reg-
ularity that has likely or probable epistemic value and that has the potential for 
mathematical theorization” (p. 10). Students can make valid or invalid conjectures, 
based on valid or sometimes invalid reasoning, and the latter, while not ideal, can 
serve as a starting point for understanding mathematical ideas. Conjectures can be 
written in different ways, or even exist only in the students’ minds. Students de-
velop conjectures about concepts and skills, whether they state them or not, by ob-
serving commonalities between different facts. Students develop generalizations, 
that lead them to manipulate and clarify the meaning of concepts, symbols, and 
representations (Mata-Pereira & Ponte, 2018). 

More specifically, a generalization “involves identifying commonalities 
across cases or extending the inference beyond the domain in which it originated” 
and “identifying the application of the generalization by recognizing the relevant 
domain” (Lannin et al., 2011, p.12), which is an important specificity for formulat-
ing conjectures. An important aspect of producing a generalization is the identifi-
cation of a pattern. Jeannotte and Kieran (2017) define identifying a pattern as “An 
MR process that, by the searching for similarities and differences, infers a narrative 
about a recursive relationship between mathematical objects or relations” (p. 10). 

Justifying, in turn, has to do with explaining a previously made assumption 
by presenting reasons (arguments) to change the epistemic value first from “prob-
able to more probable” and then to true or false. Araman et al. (2019) state that 
justification has to do with “identifying relationships that allow us to understand 
why a statement can be true or false” (p. 468). Thus, understanding justification as 
closely related to “investigating why” leads the students’ elaboration of arguments 
“to convince themselves and others of why a particular statement is true” (Lannin 
et al., 2011, p. 35), using various mathematical concepts. 



The development of students’ mathematical reasoning in Calculus courses 

42 AIEM (2023), 24, 39-56 

Supported by procedures, properties, and definitions, justifications, and gen-
eralizations are seen as central aspects of reasoning, that mathematically validate 
certain statements. It is up to the teacher to propose situations that promote justi-
fications, emphasizing the “why,” and redirecting students to the context of a 
given situation. In this sense, several studies carried out in different countries show 
that “only at an advanced level do students appreciate the need for convincing rea-
soning from an explicit set of assumptions” (Galbraith, 1995, p. 412). Thus, the de-
velopment of students’ MR implies interventions that lead them to make sense of 
justifications, supported by mathematical knowledge. To mobilize these processes, 
the way the teacher organizes the lesson is relevant, and the choice of tasks and the 
way they are presented are of singular importance. Studies show that task-solving 
episodes, with exploratory or investigative tasks, lead students to develop MR 
(Ponte et al., 2012). 

The work with exploratory tasks does not replace others present in a tradi-
tional DIC classroom, such as the teacher’s exposition of the concepts or the solu-
tion of routine tasks. Therefore, it is necessary to consider teacher’s actions. Some 
studies characterize teacher’s actions, especially those that are most effective in 
promoting students’ reasoning, among which we highlight Wood (1998), Ponte et 
al. (2013), and Ellis et al. (2019). 

Wood (1998) believes that mathematical reasoning develops in classrooms 
where there are frequent interaction situations that require teacher actions that 
enable exchanges between teacher and students. The author points out that in 
classrooms where exchanges between teachers and students occur, it is possible to 
observe three patterns of interaction. The first interaction pattern — report — oc-
curs when the student tells how he solved the problem. In the second interaction 
pattern — questioning — the student continues to tell how he solved the problem, 
but the teacher asks him to explain why he did it that way and to clarify for the 
teacher and the other students why he did it that way. In the third interaction pat-
tern — arguing — students tell how they solved the problem, clarifying their 
meanings and giving reasons. 

In turn, Ponte et al. (2013) propose a model for analyzing the teacher’s actions 
in moments of discussion with small groups of students, or in a plenary session, 
with the whole class, organized in four categories. The first is to invite, which 
would be the student’s first contact with the topic to be addressed. The second is to 
guide/support, in which the teacher, through questions, guides the students to 
continue participating in the solution of a task that has already started. The third is 
to inform/suggest, the moment when the teacher validates the students’ answers, 
introducing new information and providing new arguments. The last is to chal-
lenge, when the teacher “puts the student in the situation of moving on to new ter-
ritory, whether in terms of representations, interpreting of statements, making 
connections, or reasoning, arguing or evaluating” (Ponte et al., 2013, p. 59). 

Another similar model (Ellis et al., 2019) also organizes the teacher’s actions 
into categories, each of which details possible actions. In this model, we can iden-
tify some actions and interactions in pedagogical movements that the teacher can 
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play in the learning process at the moment of collective discussions in the class. In 
the low potential movements, we notice that the teacher’s actions are focused on 
encouraging the students to present their justifications and conclusions about the 
task, while in the high potential movements, the actions are focused on elucidating 
the reasoning developed. 

Based on these models, Araman et al. (2019) organized an analysis framework 
that describes the teacher actions that support mathematical reasoning, shown in 
Table 1. Through the articulation of these models, the proposal describes the dif-
ferent actions that underline each of the main categories of teacher actions, and 
which will serve as support for the analysis in the context of one of the tasks pre-
sented in this article, in higher education engineering. 

Table 1. Teacher’s Actions Analysis Table (Araman et al., 2019, p. 476) 

Categories Actions 

Invite 
Requesting answers to specific questions. 
Requesting reports on how they did it. 

Guide/ 
Support 

Providing clues to students. 
Encouraging explanation. 
Leading the students’ thinking. 
Focusing the students’ thinking on important facts. 
Encouraging students to re-state their answers. 
Encouraging students to re-elaborate their answers. 

Inform/ 
Suggest 

Validating correct answers provided by students. 
Correcting incorrect answers provided by students. 
Re-elaborating responses provided by students. 
Providing information and explanations. 
Encouraging and providing multiple resolution strategies. 

Challenge 

Requesting students to provide reasons (justifications). 
Proposing challenges. 
Encouraging assessments. 
Encouraging reflection. 
Pressing for accuracy. 
Pressing for generalizations. 

 
 

In preparing the tasks to be used in this teaching model, in order to promote 
covariational reasoning and a reinterpretation of the concept of function, it is con-
sidered that the following skills should be developed: constituting the quantities 
involved in the situation; reasoning about the process of measuring these quanti-
ties; imagining measures of quantities that vary continuously; and coordinating 
two quantities that vary together. 

It should be emphasized that proposing these reflections about variables and 
functions does not dispense with the algebraic approach and proofs and theorems 
being taught on DIC. On the contrary, it is intended to make them more meaningful 
and closer to applications in the context of Engineering. 
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3.  METHODOLOGICAL PROCEDURES 

3.1. Research Characterization and Context 

The research follows a qualitative-interpretive approach (Bogdan & Biklen, 1994; 
Crotty, 1998), with design-based research (DBR) assumptions (Cobb et al., 2003). 
In particular, it adopts the teaching experience methodology as a special type of 
DBR, organized in task-solving episodes (Trevisan & Mendes, 2018), considering 
the development of the planning, application, and investigation processes about 
these episodes in DIC classrooms, and their relationship with the development of 
students’ MR. 

The data presented here were collected from Engineering students' DIC 
courses in classes taught by the first author. The assignment cycles were conducted 
between 2017 and 2019 in DIC, part of the first-semester grid (32 classes of 150 
minutes). The curriculum includes the study of functions, limits, derivatives, and 
integrals of real functions, of a real variable. This paper focuses on three tasks (each 
of a class of 150 minutes), where about 50 students were organized into groups of 
three or four. Group work was followed by a plenary session to share solutions and 
systematize concepts, following the assumptions of Stein et al’s. (2008) assump-
tions for orchestrating productive mathematical discussions. The tasks (Figures 1, 
2, and 3) were designed to get students to mobilize their ability to analyze the 
change variables, in a coordinated way by articulating different representations 
(Thompson & Carlson, 2017). In task 3, we chose not to explicitly state that the rate 
of spread of the rumor begins to decrease when almost everyone has heard of the 
rumor, leaving it up to students to consider (or not) this assumption. 

Figure 1. Task 1. Bottle Task, adapted from Thompson & Carlson (2017) 

Water is poured into a spherical bottle at a constant rate. Use this information and 
the shape of the bottle to answer the following questions. Sketch a graph showing 
the level of water in the bottle over time. Explain the reasoning that led you to this 
graph. 

 

Figure 2. Task 2. Mixture Task 

A tank contains 5000 liters of fresh water. A mixture containing 750 grams of salt 
diluted in 25 liters of water is pumped into the tank every minute. Investigate how 
the concentration of the mixture in the tank behaves for “very large” time values. 

 

Figure 3. Task 3. Rumor Task, adapted from Connally et al. (2009) 

When a rumor starts in a small town, initially, the number of people who have 
heard it starts slowly, and as more and more people know about it and comment on 
it, it spreads rapidly, even as the number of people who know about it reaches the 
borders of the region. Plot a graph showing how many people know about the ru-
mor over time. 
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3.2. Data collection and analysis procedures 

The data collected consisted of (a) protocols containing written records of the dis-
cussions in small groups of students working on exploratory tasks; (b) audio re-
cordings of the discussions in these small groups; and (c) video recordings of ple-
nary discussions of student solutions facilitated by the teacher. 

The analysis of the data is carried out inductively (Erickson, 1986), using dif-
ferent techniques — considering that these data are produced by different sources. 
The analysis of the collected data, although supported by the theoretical refer-
ences, is surrounded by the understanding and comprehension of the three re-
searchers. 

After the data collection by the first author and the teacher of the class, a sys-
tematic, more organized, and rigorous analysis was carried out, based on the stages 
present in the Powell et al. (2004) model, first listening to the audio in its entirety, 
then identifying significant moments and transcribing them, and then analyzing 
them. An initial categorization of the teacher’s thought processes and teacher’s ac-
tions was carried out individually by each of the three researchers and, in a second 
moment, they all came together to make a comparative analysis, until they reached 
a consensus, whose analysis is presented in the next section of this article. 

In order to identify a greater variety of reasoning processes mobilized by the 
students, data of types (a) and (b) were considered to identify a greater variety of 
reasoning processes mobilized by students, in the case of Tasks 1 and 2, data of 
types (a) and (b) were considered. In this paper, only one group of three students 
was analyzed. The criteria for selecting the group was to select those in which stu-
dents were more involved in “presenting, justifying, arguing and negotiating of 
meanings” (Rodrigues et al., 2018, p. 399). In turn, to understand how the teacher’s 
actions can contribute to the development of MR (Araman et al., 2019), we highlight 
the data in (c), considering an excerpt from the plenary in which we believe there 
was expressive participation of students and a greater variety of these actions. The 
results are organized, sequentially and separately, for each of the proposed tasks, 
considering the objectives announced in the introduction of the article. 

4. DATA PRESENTATION AND ANALYSIS 

4.1. Task 1 

The student members of the group (S1, S2, S3) made a first sketch (Figure 4, left), 
which we understand as a first conjecture that they tried to validate in the following 
discussion: 

[1.1] S1: The graph will look like this, won’t it? 

[1.2] S2: Yes, because first it goes up fast, then it slows down and then comes 
back faster, because of this here [points to the center of the bottle]. 

[1.3] S3: So, but then if you’re going to measure the height of the bottle by the 
diameter, it’s a straight line [The student might say “diameter” to refer to a 
vertical axis with which to measure the height of the empty bottle]. 
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[1.4] S2: No, because the radius here is smaller than here [comparing the lower 
part with the middle part of the bottle] so the amount of water you pour here, it 
will appear here immediately. When it starts to fill from that point on, it will 
take time to rise and here it will rise faster [pointing to the diameters of the wa-
ter surface in the bottle as it would be filled]. 

[1.5] S3: Yes, but I’m talking about the diameter. 

[1.6] S1: I think it would look kind of like this [Figure 4, right]. Would it be a 
straight line? 

Figure 4. Sketches proposed by the group of students in Task 1 

 
 

In order to validate the first conjecture, student S2 elaborated justifications 
based on the shape of the bottle, imagining what the diameter of the water surface 
would be as it was filled [1.2]. He argued that the height would first increase rapidly, 
then decrease, and then return more rapidly. Student S3, in turn, presented a new 
conjecture: that the graph relating the water level to the diameter of the water sur-
face would be a straight line [1.3]. Student S2 again elaborated on his justification 
for the graph format, now mentioning the radius in his argument [1.4]. Student S3 
seemed to be confused [1.5], not realizing that S2’s argument implicitly considered 
time as the independent variable, not the radius of the bottle. A new representation 
(a line — Figure 4, right) emerged, suggested by S1 based on S3’s conjecture [1.6]. 
The discussion continued: 

[1.7] S1: So I think the graph would look like this [Figure 4, left], because when 
you start pouring water here, it's going to go up fast, it's going to slow down a 
little bit, look at the size here [points to the middle of the bottle], then when it 
starts to taper here, it's going to go up faster. This graph here [Figure 5, right] 
would be the water level. The volume will be constant, it will always fill the same 
amount [Figure 4, right]. 

In this excerpt, Student S1 reformulated the arguments to validate the initial 
conjecture based on the "way" in which the water level varied. He also pointed to 
the other graph, acknowledging that it represented the volume of water in the bot-
tle; however, in his justification, he incorrectly used the word constant, since the 
rate of change of the volume was assumed to be constant in the task statement. 

Although the group managed to validate the initial conjecture, the elabora-
tion of arguments justifying the change of the concavity, or even the fact that the 
initial part of the graph has a concavity facing downwards and then upwards, was 
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not part of the discussion. These aspects were accepted almost as a matter of course 
by S2 and S3 from the sketch prepared by S1, although it was an incomplete justifi-
cation that did not address the concept of concavity. 

4.2. Task 2 

The students (S1, S2, S3) of the same group started the solution by trying to 
interpret the information contained in the problem statement: 

[2.1] S3: If after one minute 25 liters of water and 750 grams of salt are added, 
let's say time 1 is 1 minute. 

[2.2] S1: So I'll have 5025 liters. 

[2.3] S3: I think we should draw a table first. 

[2.4] S1: Okay. At t=0 there are 5000 [liters of water]. At time 1, there are 5025 
liters of water and 750 grams of salt. At time 2, there are 5050 liters of water and 
1500 grams of salt. Now we can get the percentage of concentration. Do you get 
it? Because then we start to get the difference. 

[2.5] S2: Ah, yes, because it would increase infinitely. 

[2.6] S3: Do it: 750 divided by 5025. It's 0.14, because concentration is the 
amount of matter divided by the total volume. Ah! I'll do it here because we're 
going to follow a pattern. Now 1500 divided by 5050. It's 0.30. It doubled! 

[2.7] S1: But I don't think it's going to stay that way. 

[2.8] S2: Yes, I don't think it will. 

In this first excerpt, students made some conjectures based on the context of 
the task, for example in [2.1] and in [2.2]. Students began to think about how to 
organize the data to find a generalization. In this way, they started to try to draw a 
table [2.3]. From what S1 said [2.4], after reaching some conclusions, they can per-
ceive the function as increasing and supposedly without stabilization, so they 
started trying to find ways to work with the numbers now. In [2.6] student S3 came 
up with a new conjecture, trying to generalize that the concentration would double 
in every unit of time, but soon after other students refuted this conjecture. The dis-
cussion continued: 

[2.9] S2: We have to find the function to get to a number far ahead. 

[2.10] S1: Do it three more times... 

[2.11] S3: After three minutes the concentration is 0.44. I think I see a pattern, 
but let's wait. 

[2.12] S2: It increased again by 0.15 from time 2 to time 3. From here to there 
[from 1 to 2 minutes] and from here to there [from 2 to 3 minutes] it's 0.15. I 
love it when that works. 

[2.13] S3: I think now we should come up with a function. Because then we can 
draw the limit to infinity. 

[2.14] S1: Will there come a time when the concentration stays constant? Be-
cause you're always adding more water. 
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[2.15] S2: Yeah, because if they were just adding salt, it would eventually satu-
rate, but they're adding it diluted in water, so no matter how much it increases, 
it's not going to grow forever. 

In this excerpt, students began to investigate and develop mathematical ar-
guments to explain why the previous generalization (about double) was incorrect. 
Next, they conjectured that the rate of change of concentration would remain con-
stant (about 0.15) [2.12]. So they began to think about using mathematical relations 
to prove this new conjecture, such as the concept of limit [2.13]. So the group tried 
to develop an algebraic expression that generalizes the relation between mixture 
concentration and time (t): 

[2.16] S3: The concentration will be the mass divided by the volume. The mass 
will be 750t. And the volume is 5000 plus 25t. 

[2.17] S1: There you go, now we can apply it and see if it's right. 

[2.18] S3: Do it with 4. 

[2.19] S2: It worked! 

In the excerpt, student S3, in a process of generalization, proposed a mathe-
matical formula that makes sense to everyone. Having found a formula, in [2.17] 
the student looked for a way to validate it, and for this, he chose certain time values 
[t=4]. The discussion continued. 

[2.20] S3: Now let's try to get to the limit. I don't remember the rule, do you? 

[2.21] S1: I think if it goes to infinity multiplied by a very large number, it goes 
to zero. I don't remember how to do that either. 

[2.22] S3: Because look, what is going to happen? This number 750t is going to 
get really big, and this part 5000 plus 25t is also going to get really big. 

[2.23] S3: Look, if it's 1 million, it's 29.99. 

[2.24] S2: So it's always going to go up, but up to what number? Because like, it 
wasn't over 30, but up to what number does it go? 

[2.25] S3: I know why; it's because 750 divided by 25 is 30. If that time is too 
long, that 5,000 becomes negligible, so what will it be? Practically 750 divided 
by 25, so it's never going to be more than 30 anyway. 

Finally, in this last part of the discussion, the students tried to understand 
and validate their conjectures about the limit [2.20-2.23]. They still did not under-
stand why the concentration remained stable at 30. Soon after, student S3 was able 
to unravel the reason and explain it to his peers [2.25], thus justifying their choices 
and validating the generalization they had formulated. 

4.3. Task 3 

After two different graphs have been reproduced on the blackboard by the 
group members (Figure 5, graph A by S1 and B by S2 and S3), the teacher (T) leads 
the discussion to clarify what each group thought, to assess which group(s) fol-
lowed the task statement and to make comparisons, identifying similarities and 
differences. 
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Figure 5. Graphs produced by the groups for Task 3 

 
 

[3.1] S2: [Graph B] The last part, instead of continuing to grow, it stabilizes, be-
cause there will come a time when there are no more people to hear the rumor. 

[3.2] T: And how does it stabilize? Is that shown in the drawing? 

[3.3] S2: The number of people will stabilize and it starts to stabilize, this in this 
drawing here is like this [points to a part of the graph B]. 

[3.4] S1: [Graph A] Our difference is that it doesn't stabilize in a way where it 
stabilizes all at once. It forms a 90-degree angle as it stabilizes. The same curve 
grows in time, but it stabilizes at once because it reaches the limit of people and 
becomes different from them. 

[3.5] S3: Sir, just to explain, I don't know if this is right [Graph B]. We thought 
that the number of people would grow fast over time. It would be the first part 
[before the turning point], and then it would grow slower. As time goes by, the 
number of people in the city will run out. So it will stabilize, and over time the 
same number of people will know, right? 

[3.5] T: Did this idea of yours cause this "turnaround" here [inflection point in 
graph B]? 

[3.6] S2: Yes, because it wasn't abrupt. 

[3.7] S1: [Graph A]. The maximum growth is reached, therefore the maximum 
number of people. This is the moment when it stops growing and stabilizes. In 
the second [graph B], when it reaches the maximum growth, it starts to de-
crease, then it will reach it. 

[3.8] T: Technically speaking, growth declines, what does that mean? 

[3.9] S2: The growth decreased. 

[3.10] T: What does it mean to say that the growth has decreased? 

[3.11] S3: It is growing slower. 

Based on the conjecture presented by S2 concerning graph B (in [3.1]), the 
teacher carried out actions of the guidance/support category, in [3.2]. The teacher 
encouraged the students to give justifications for the constructions presented, 
which led students S1, S2, and S3 to better elaborate their justifications. For exam-
ple, after the teacher's question about the stability described by S2, he justified by 
pointing to a point in his representation and showing that he recognized a hori-
zontal asymptote in the graph of the function. In turn, S1 justified that the way this 
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asymptote is formed in the two representations is different; S3 reflected by point-
ing out that this difference is due to the way each of the groups interpreted the task 
(as a slower or faster growth rate). 

He also focused the student's thinking on important facts by trying to differ-
entiate some subtle aspects in graphs A and B, an action that also falls into the cat-
egory of guidance/support. In particular, he drew attention to what he called a 
"turnaround" in [3.5], referring to the inflection point. This action led S1 to elabo-
rate his justifications for the inflection point, both for graphs A and B, in [3.7]. The 
challenging action, in turn, is present in the subsequent discussions, in [3.8] and 
[3.10], when the teacher asked the students to explain what the expression growth 
decline means. He intended to push the students for a more precise explanation, 
which was provided by S3 in [3.11]. 

The arguments students used to explain their construction, shown in the ex-
cerpt above, represent important aspects of the development of covariation rea-
soning skills. In particular, the context of the task led them to recognize the need 
to change the concavity of the graph to represent the behavior of a variable (the 
number of new people who hear about the rumor) that changes the mode as it 
grows. This allows us to intuitively explore this concept by relating it to the idea of 
rate of variation: if the rate of variation is increasing, then the graph is concave 
upward; and if the rate of variation is decreasing, then the graph is concave down-
ward. This allowed students to intuitively explore a concept that would be formal-
ized later in the DIC course, as seen in the following dialog. 

[3.11] T: The problem does not explain whether this slowing down occurs. So if 
I interpret that there is a moment when this rumor spread starts to slow down, 
would that slow down tell me which is the correct graph? 

[3.12] S1: Graph B. 

[3.13] T: Well, if I don't assume that this slowing down has occurred... that it's 
spreading and spreading, there comes a time when people run out. What graph 
would that be? 

[3.14] S3: The first one [graph A]. 

[3.15] T: Suppose at some point the pace of rumor spread slows down, leading 
to a change in the trend that has been going on in the graph. How can we de-
scribe this change? What happens on the graph? 

[3.16] S3: It has two curves [referring to one concave part up and another con-
cave part down]. 

In this excerpt, we first highlight a combination of actions from three cate-
gories. In order to move students forward in their understanding, the teacher per-
formed informing/suggesting actions, as in [3.11], when he clarified that the task 
does not explain what the rate of spread of the rumor is, and in [3.15], when he 
pointed out that at some point the rate of spread of the rumor starts to slow down, 
leading to a shift in the trend. The teacher also acted as guidance/support by en-
couraging students to identify which graph would best represent the situation if 
the rate did or did not slow down, in [3.11] and [3.13]. Finally, the action of asking 
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students to establish a relationship between the slowing behavior of the rumor 
propagation rate and the corresponding graphical representation [3.15]. This ques-
tion was answered by S3 in [3.16]. 

5. DISCUSSION AND FINAL CONSIDERATIONS 

The aim of this work was to understand how the performance of task-solving epi-
sodes, linked to the teacher's actions, can contribute to the development of stu-
dents' MR in DIC courses in three episodes. To achieve this, data analyses were per-
formed in two aspects: in the case of the first and second episodes, the MR pro-
cesses mobilized by the students while solving exploratory tasks were analyzed. In 
the third episode, it was analyzed with a moment of discussion with the teacher, 
highlighting the role of the teacher's actions during the plenary discussion and how 
these actions supported mathematical reasoning. 

Regarding the MR processes, the group that solved Task 1 made a first con-
jecture, mobilizing their mathematical knowledge related to the rate and direction 
of growth. This conjecture was illustrated by drawing a graph, which students tried 
to validate in the following discussion, identifying relationships that allowed un-
derstanding why a statement was true or false (Araman, Serrazina & Ponte, 2019). 
This was done in the subsequent discussion, where students tried to validate the 
conjecture they had developed based on new relationships between their mathe-
matical knowledge (related to the shape, height, and diameter of the bottle). 

The discussion led to the elaboration of a new conjecture, illustrated by a new 
graph (a line), which was not immediately accepted by the group, leading to new 
discussions and the establishment of new relationships. The group decided to val-
idate the first conjecture and the first graph by justifying that, although supported 
by logical arguments based on ideas already understood (Lannin et al., 2011), it 
misused the expression constant growth and did not address the concept of con-
cavity. 

In the case of Task 2, there is evidence of a cyclical movement (Jeannotte & 
Kieran, 2017) to reason about mathematical relationships and develop statements 
(conjectures), and to try to recognize and explain the validity (or not) of these 
statements (justification) (Lannin et al., 2011). At times, it has allowed them to ex-
tend regularities observed in specific cases (generalization) - such as the change in 
the amount of water and the amount of salt as a function of time and, more gener-
ally, concentration as a function of time - thus demonstrating conceptual under-
standing (Mata-Pereira & Ponte, 2018). 

Regarding the moment of the teacher's discussion with the students, in the 
case of Task 3, a continuous and growing movement of the teacher's actions is 
identified during the plenary, essentially related to the deepening of the discus-
sions based on the elements presented by the students themselves and the oppor-
tunities to mobilize different mathematical reasoning processes. Thus, according 
to Araman, Serrazina, and Ponte (2019), the discussion of the task initially consid-
ered guide/support and challenging actions. Guide/support actions are recurrent in 
the first excerpts and are intended to engage students in the discussion, explain 
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how they performed the task, and focus on important aspects of the task. These 
actions are very likely to support the progress of the students' thinking since the 
purpose of the questions and their development contribute to the conjecturing of 
mathematical ideas. The students, through these actions of the teacher, made ex-
plicit and reformulated their initial conjectures. 

Actions in the challenge category are more present when the teacher is trying 
to deepen the justification of the facts presented by the students. For Araman, Ser-
razina, and Ponte (2019), these actions have the greatest potential for developing 
more sophisticated MR processes, such as generalizing and justifying. We also rec-
ognize that, in the inform/suggest category, the actions were designed to provide 
information and concepts that were new to the students. For example, when asked 
by the teacher, they justified their responses by extending their intuitive under-
standing of mathematical elements present in their representations, such as hori-
zontal asymptote, inflection point, and growth rates. 

The three proposed tasks allowed students to explore quantitative relation-
ships between variables, reflect on these quantities and the relationship between 
them (Thompson & Carlson, 2017), and use different mathematical representa-
tions. They were encouraged to coordinate two quantities that vary together, to 
recognize how quantities are related, the direction of increase and decrease, the 
existence of rates of variation and possible changes in that rate, different repre-
sentations of the same function, as well as to apply DIC algebraic tools based on a 
situation intuitively explored a priori and, in the case of Task 2, to develop justifi-
cations as a basis for generalizations. In the case of Task 1 and Task 3, the con-
structed narratives showed a movement towards a coordinated analysis of the 
changes that occur in two interdependent variables, without the groups being able 
to explicitly relate these changes to the concavity of the function graph. 

Working with exploratory tasks in a DIC course allowed students to explore 
concepts associated with the study of functions, such as domain and image, direc-
tion of growth, rate of increase/decrease, concavity, and concavity variation. Stu-
dents were not expected to reach a formal definition of these concepts, but to mo-
bilize reasoning processes that contributed to a more robust understanding of the 
interdependent relationship that exists between two variables and how changes in 
this relationship can be observed in engineering problems. 

Constant work with exploratory tasks can improve students' ability to mobi-
lize more MR processes, leading them to understand that mathematical justifica-
tions are elaborated from logical arguments based on previously understood ideas, 
without resorting to arguments based on authority, perception, common sense, or 
specific examples (Lannin et al., 2011). Thus, as implications of this study in the 
context of engineering education, we highlight some aspects that emerged from 
this practice: more active and interested students, with initiative to solve tasks 
proposed in class, compared to students in a traditional DIC classroom in Brazil 
(Trevisan, 2022). 

The results show that task-solving episodes combine the basic skills provided 
by the new National Curriculum Guidelines for Engineering Courses in Brazil 
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(Brasil, 2019) with subjects of the basic cycle of an engineering program (as DIC), 
exploring the same content from approaches that mobilize MR processes in dis-
cussions of real situations in a process of proposing, constructing, validating, and 
generalizing. It should be noted that lessons that follow this type of methodology 
are hardly found in traditional teaching environments. The background of this text 
is an environment in which students are constantly asked to reason mathemati-
cally, to elaborate conjectures, to find a way to justify them, and to build generali-
zations, which are fundamental for the development of students' MR in the context 
of Mathematics for Engineering. The data showed that in the moments of discus-
sion among students and between students and teacher (through their different 
actions), students provided mathematical arguments supported by the processes 
of mathematical reasoning. 
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El desarrollo del razonamiento matemático de los 

estudiantes en los cursos de Cálculo 

André Luis Trevisan @  1, Eliane Maria de Oliveira Araman @  1, 
Maria de Lurdes Serrazina @ 2 
1 Universidade Tecnológica Federal do Paraná (Brazil) 
2 Escola Superior de Educação do Instituto Politécnico de Lisboa (Portugal) 
 

El objetivo de este artículo es comprender cómo la participación de los estudiantes en 
la resolución y discusión de tareas exploratorias, vinculadas a la actuación del profesor, 
puede contribuir al desarrollo de su razonamiento matemático (RM) en un curso de 
Cálculo Diferencial e Integral (CDI). El estudio fue diseñado como una investigación 
cualitativa, con un enfoque interpretativo, y los participantes fueron estudiantes de un 
programa de educación superior de ingeniería en una Universidad Federal en el Estado 
de Paraná, Brasil. Los datos recolectados consisten en (a) protocolos con registros es-
critos de discusiones en pequeños grupos de estudiantes sobre tres tareas explorato-
rias; (b) audios de estas discusiones; y (c) video de la discusión plenaria mediada por el 
profesor a partir de las resoluciones de los estudiantes. Discutimos los procesos de RM 
que movilizan los alumnos, especialmente conjeturar, generalizar y justificar. En el 
caso de la primera tarea, el grupo hizo conjeturas sobre la velocidad y la dirección del 
crecimiento e intentó validar sus conjeturas basándose en nuevas relaciones entre sus 
conocimientos matemáticos (relacionados con la forma, la altura y el diámetro de la 
botella). En el caso de la segunda tarea, hay evidencias de un movimiento cíclico para 
razonar sobre relaciones matemáticas y desarrollar afirmaciones (conjeturas), tra-
tando de reconocer y explicar la validez (o no) de estas afirmaciones (justificación). A 
veces ha sido posible extender regularidades observadas en casos particulares (genera-
lización), demostrando comprensión conceptual. Con respecto a la tercera tarea, seña-
lamos cuáles de las acciones del profesor pueden contribuir al desarrollo de la RM, en 
un movimiento continuo y creciente, esencialmente relacionado con la profundización 
de las discusiones a partir de elementos presentados por los propios alumnos, y las 
oportunidades que se crean en este proceso. La actuación del profesor en la gestión de 
la discusión está en consonancia con las competencias que se deben formar en los fu-
turos ingenieros, ya que favorece el intercambio de ideas, con repreguntas de explica-
ciones y justificaciones, aunque sean parciales o incorrectas. El trabajo constante con 
tareas exploratorias puede mejorar la capacidad de los estudiantes para movilizar más 
procesos de RM, llevándoles a comprender que las justificaciones matemáticas se ela-
boran a partir de argumentos lógicos basados en ideas previamente comprendidas, sin 
recurrir a argumentos basados en la autoridad, la percepción, el sentido común o ejem-
plos concretos. Los resultados también mostraron que un curso DIC dinámico con es-
tudiantes involucrados en tareas exploratorias es consistente con el desarrollo de la RM 
y las competencias previstas por las nuevas Directrices Curriculares Nacionales para los 
Cursos de Ingeniería en Brasil. 
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