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Una aproximación para enseñar con variaciones: usando problemas típicos 

Resumen 

Los profesores de matemáticas usan problemas típicos desde propuestas de exámenes anteriores y 

desde los libros de texto  para desarrollar destrezas procedimentales. En este articulo, discutimos otros 

usos de los problemas típicos. Nos centramos en las oportunidades que un profesor experimentado, John, 

percibe en los problemas típicos y cómo los usa para  potenciar el aprendizaje de sus estudiantes 

aprovechando las variaciones del problema(o bianshi). A partir de los datos de una investigación  con 

enfoque cualitativo centrada en la competencia “mirar profesionalmente” del  profesor, presentamos una 

instantánea de la práctica de John para mostrar lo que observa de las posibles variaciones en los 

problemas típicos  y cómo las usa con los estudiantes para promover tanto las destrezas procedimentales 

como la comprensión conceptual. Los resultados subrayan el potencial de apoyar a los profesores para 

que aprovechen las variaciones de los problemas típicos, lo cual  tienen implicaciones para la formación 

inicial y continua de profesores. 

Palabras clave. Tareas matemáticas; formación de profesores; enseñar con variaciones; problemas 

típicos. 

 

Uma abordagem para ensinar com variações: usando problemas típicos 

Resumo 

Os professores de matemática usam problemas típicos de propostas de exames anteriores e de livros 

didáticos para desenvolver procedimentos. Neste artigo, discutimos outros usos de problemas típicos. Nós 

nos concentramos nas oportunidades que um professor experiente, John, percebe nos problemas típicos e 

como ele os usa para melhorar a aprendizagem de seus alunos aproveitando as variações do problema (ou 

bianshi). A partir dos dados de uma pesquisa qualitativa voltada para a competência “olhar 

profissionalmente” do professor, apresentamos um instantâneo da prática de John para mostrar o que ele 

observa de possíveis variações em problemas típicos e como ele os usa com os alunos para promover 

habilidades processuais e compreensão conceitual. Os resultados destacam o potencial de apoiar os 

professores para tirar proveito das variações de problemas típicos, que têm implicações para a formação 

inicial e contínua dos professores. 
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An approach to teach with variations: using typical problems  

Abstract 

Mathematics teachers use typical problems from past examination papers and textbook exercises to 

develop procedural skills. In this paper, we discuss other uses of typical problems. We focus on the 

affordances that an experienced teacher, John, perceives in typical problems and how he uses them to 

enhance student learning by harnessing the idea of teaching with variations or bianshi. Drawing on data 

from a larger qualitative design-based research on investigating teacher noticing, we present snapshots of 

John’s classroom practices to show what he noticed about the variations afforded by typical problems and 

how he used these problems with students to promote both procedural skills and conceptual understanding. 

Findings suggest the value of supporting teachers in harnessing variations of typical problems, which has 

implications for teacher education and professional development. 

Keywords: Mathematical tasks; teacher education; teaching with variations; typical problems. 

Une approche pour enseigner avec des variations: utilisation des problèmes typiques 

Résumé 

Les professeurs de mathématiques utilisent des problèmes typiques des propositions d'examen 

précédentes et des manuels pour développer des compétences procédurales. Dans cet article, nous 

discutons d'autres utilisations de problèmes typiques. Nous nous concentrons sur les opportunités qu'un 

enseignant expérimenté, John, perçoit dans les problèmes typiques et comment il les utilise pour améliorer 

l'apprentissage de ses étudiants en profitant des variations du problème (ou bianshi). À partir des données 

d'une recherche qualitative axée sur la compétence «noticing» de l'enseignant, nous présentons un aperçu 

de la pratique de John pour montrer ce qu'il observe des variations possibles dans les problèmes typiques 

et comment il les utilise avec les élèves promouvoir les compétences procédurales et la compréhension 

conceptuelle. Les résultats soulignent la possibilité d'aider les enseignants à tirer parti des variations de 

problèmes typiques, qui ont des implications pour la formation initiale et continue des enseignants. 

Paroles clés. Tâches mathématiques; formation des enseignants; enseigner avec des variations; 

problèmes typiques  

 

1. Mathematical tasks and typical problems 

Mathematics teachers invariably orchestrate lessons using a multitude of tasks. 

Traditionally, teachers have used typical problems such as examination-type questions 

and standard textbook exercises, to develop procedural skills. Despite the 

“omnipresence” of typical problems in the mathematics classroom, research into their use 

for developing conceptual understanding is limited. Do typical problems have 

affordances for developing conceptual understanding? In this study, we focus on the 

following research questions: (1) What affordances do teachers perceive in typical 

problems, and (2) How do they use typical problems in the classroom to enhance student 

learning? We describe how an experienced teacher, John, used typical problems to 

develop both procedural skills and conceptual understanding by harnessing the idea of 

teaching with variations or bianshi. 

Mathematical tasks are central to student learning because they convey meaning 

about what mathematics is and what doing mathematics entails. The answer to what 

constitutes a task in the mathematics classroom may depend on the perspectives of both 

the teacher and the students. The teacher sets tasks for the students to work on and elicit 
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particular learning outcomes. Stein, Grover and Henningsen (1996) encapsulate this view 

in their description of task as “classroom activity, the purpose of which is to focus 

students' attention on a particular mathematical idea” (p. 460). Along the same lines, 

Watson and Thompson (2015) refer to the written presentation of a planned mathematical 

experience for a learner, which could be one action or a sequence of actions that form an 

overall experience. Thus, a task could consist of anything from a single problem, or a 

textbook exercise, to a complex interdisciplinary exploration. Questions set by teachers 

for groups of students to work on are considered as tasks too.  

Mathematics teachers use a variety of tasks during lessons to develop mathematical 

competencies in students. Efforts on orchestrating productive mathematical discussions 

(Smith & Stein, 2011) have amongst others been focused on the use of rich mathematical 

tasks (Grootenboer, 2009), challenging tasks (Sullivan et al., 2014), high-level tasks 

(Henningsen & Stein, 1997) and open-ended tasks (Zaslavsky, 1995). Although these 

tasks offer opportunities for students to do mathematics (Smith & Stein, 2011), they also 

present obstacles in implementation. First, these tasks may have too high an entry point 

for many students so that teachers have to provide additional prompts or scaffolds 

(Sullivan et al., 2014). Next, it takes time and effort for teachers to select, adapt or design 

challenging tasks for use in the classroom. Third, the inherent complexity of the rich 

tasks involves mathematics from across the curriculum, and results in these tasks 

implemented across several lessons. Consequently, these obstacles place high demands 

on teachers’ knowledge and time, and may limit the incidence of such tasks in the 

mathematics lessons.   

Furthermore, teachers may face challenges during the implementation of a lesson 

based on a single mathematically-rich task (Grootenboer, 2009) because students may not 

engage with it as intended. The centrality of a task is restrictive as it constrains the 

teacher and the flow of the lesson. It may not be easy to bring in a new task to re-engage 

students when they lose interest, or digress during the lesson to address questions and 

misconceptions. Teachers are pressed by the concurrent need to focus on honing 

procedural fluency as part of standardised testing preparations. This may lead to the 

implementation of a high cognitive-demand task as a low cognitive-demand task (Stein et 

al., 1996). These concerns are particularly true in an examination-oriented country such 

as Singapore, where the use of textbook- and examination-type questions are common.  

As in many countries, completing the syllabus and preparing students for 

examinations are genuine concerns of teachers in Singapore. It is thus common for 

teachers in Singapore to adopt a teacher-centred teaching approach and use examination-

type questions to develop procedural skills (Ho & Hedberg, 2005). This preference for 

using typical problems—standard examination or textbook problems—reflect teachers’ 

belief that it is more “important to prepare students to do well in tests than to implement 

problem-solving lessons” (Foong, 2009, p. 279). We cannot ignore this reality. Despite 

the widespread use of typical problems in mathematics classrooms to develop procedural 

skills, research into their use for developing conceptual understanding remains limited.  

In Choy and Dindyal (2017a, 2017b), we describe how an experienced teacher, Alice, 

used typical problems to develop relational understanding through procedural skills and 

conceptual fluency. Using Gibson’s (1986) ideas about affordances, we emphasise that: 

(1) an affordance for using a typical problem exists relative to the action and capabilities 
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of the teacher, (2) the existence of the affordance is independent of the ability to perceive 

it, and (3) the affordance does not change as the needs and goals of the teacher change. 

Following Gibson, affordances in relation to an observer can be positive or negative 

which in our context may lead to more or less productive use of the problems in class. 

Hence, to perceive the affordances of a typical problem implies noticing the 

characteristics of the task in relation to the understanding of the related concepts and to 

its adaption for use. That includes noticing the mathematical connections encapsulated in 

the task and orchestrating discussions around connections to enhance learning. 

2. Noticing mathematical connections in tasks 

As Smith and Stein (2011) highlight, the quality of a mathematics task is critical for 

developing mathematical proficiencies through classroom discussions. Selecting high-

quality tasks requires teachers to focus their attention on the mathematical elements 

embedded in the tasks. For example, teachers may want to attend to the cognitive demand 

in terms of the mathematical processes required to solve the task (Smith & Stein, 1998). 

Besides the cognitive demands of a task, it may be useful for teachers to design tasks 

around students’ possible confusion about the concepts they are learning (Choy, 2016). 

Whether teachers select, modify or create tasks for use in class, they have to see and 

make sense of the mathematics and pedagogical considerations in the tasks. This 

specialised seeing, sense making, and decision making is a set of three inter-related skills 

referred to by researchers as teacher noticing (Mason, 2002; Sherin, Jacobs & Philipp, 

2011). 

The professional vision called noticing can be viewed as a set of practices that work 

together to improve teachers’ sensitivity to act differently in teaching. Mason (2002, p. 

61) distinguishes disciplined from spontaneous noticing by indicating its systematic 

aspect: 

The idea is simply to work on becoming more sensitive to notice opportunities 

in the moment; to be methodical without being mechanical. This is the 

difference between ‘finding opportunities’ and ‘making them’. Instead of being 

caught up in moment by moment flow of events according to habits and pre-

established patterns, the idea is to have the opportunity to respond freshly and 

creatively yet appropriately, every so often.  

There are two main ways, as Mason (2002) puts it, to raise the possibility of noticing 

in order to respond freshly or have a different act in mind for the future: advance 

preparation and learning from experience. In the case of using typical problems to 

develop relational understanding, teachers will need to notice the potential use or 

affordances offered by the tasks beyond developing procedural skills. We see noticing as 

productive when teachers perceive and harness the affordances of typical problems to 

develop procedural skills and conceptual understanding. An issue here is what makes 

noticing productive. Choy, Thomas and Yoon (2017) characterise productive noticing in 

terms of having an explicit focus for noticing through pedagogical reasoning—i.e. how 

teachers justify their instructional decisions or claims about student thinking using 

specific and appropriate details of what they have attended to. This notion of productive 

noticing builds on Yang and Rick’s (2012) Three Point Framework by suggesting that an 

explicit focus is useful for supporting teachers to notice relevant instructional details 

during the planning, teaching and reflection of lessons (Choy et al., 2017). There are two 
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key aspects of this focus. First, the three components of the didactical triangle, namely 

the mathematical concept, students’ confusion associated with the concept, and teachers’ 

course of action to address such confusion. Second, the alignment between these three 

components, that is, whether the teacher’s course of action targets students’ confusion 

when they are learning the concept. Ensuring this alignment between teachers’ 

instructional decisions and students’ confusion is not trivial, and it is mediated by 

teacher’s pedagogical reasoning (Loughran, Keast & Cooper, 2016; Sánchez & Llinares, 

2003; Shulman, 1987). Extending this notion of productive noticing, we see teachers’ 

noticing as productive when he or she is able to see the connections between the problem 

and the curriculum in terms of what to teach—concepts, conventions, results, techniques, 

and processes (Backhouse, Haggarty, Pirie & Stratton, 1992). In addition, the teacher 

needs to make sense of how the problem can feature in a sequence of other typical 

problems, and use these typical problems to develop relational understanding (Choy & 

Dindyal, 2017a, 2017b). 

3. Orchestrating discussions 

Stein, Grover and Henningsen (1996) have provided a model for instructional tasks 

used by teachers to elicit desired learning outcomes in students while focusing on a 

particular concept, idea or skill. This model also applies to typical problems thought of as 

mathematical tasks: (1) represented in curricular or instructional materials, (2) set up by 

the teacher in the classroom, and (3) interpreted by students in the classroom (Figure 1). 

Although the model provides a way to think about the representation, setup and 

implementation of tasks, the features of a task are necessary but not sufficient for 

enhancing student reasoning (Henningsen & Stein, 1997). Based on the analysis of 58 

tasks (out of 144) that might afford ‘doing mathematics’ (Smith & Stein, 1998), it was 

found to be critical for teachers to support student reasoning by “pressing” them to 

“provide meaningful explanations or make meaningful connections”, without “reducing 

the complexity and cognitive demands of the tasks” (Stein et al., 1996, p. 546). This is 

what Mason and Johnston-Wilder (2006) termed as “scaffolding and fading” (p. 83). 

Therefore, how a teacher engages students with the task during task implementation is of 

utmost importance in supporting their mathematical reasoning.  

 

Figure 1. Mathematical tasks (Stein et al., 1996, p. 528) 



An approach to teach with variations: using typical problems 

AIEM, número 13, mayo de 2018 26 

The use of classroom discussions to engage students with the task is not trivial. There 

is a need for teachers to give students time to explore and work on the tasks; on the other 

hand, it is crucial for teachers to use students’ responses to the tasks, and build on them to 

advance mathematical understanding.  According to Stein, Engle, Smith and Hughes 

(2008), teachers can use students’ correct, partially correct, and incorrect responses to 

tasks as initiators of discussion. The crux is to facilitate classroom interaction for shaping 

student mathematical reasoning, which is the hallmark of a well-orchestrated discussion. 

This study presupposes that orchestrating discussions is “deliberate work” (Franke, 

Kazemi & Battey, 2007, p. 228), and certain aspects of this teaching expertise can be 

planned. Stein et al. (2008, p. 321) introduced five practices: 

- anticipating possible student responses to a task; 

- monitoring their responses when students work with the task; 

- selecting students purposefully to present their work; 

- sequencing their presentations carefully to build up mathematical ideas; and 

- connecting students’ responses to each other and to the underlying mathematical 

concepts 

Smith and Stein (2011) highlight the importance of using a mathematically rich task 

for orchestrating mathematically productive discussions. They suggest an instructional 

sequence that centres about a single rich task in which students attempt, present, and 

discuss the mathematics under the orchestration of a competent mathematics teacher. 

However, in Choy and Dindyal (2017b) we suggest an alternative. Our teacher 

participant, Alice, orchestrated mathematics discussions through a careful sequencing of 

simpler tasks involving typical problems. The structure of Alice’s lesson differs from that 

envisioned by Smith and Stein (2011) in the plurality of tasks within the same lesson, 

punctuated by several more rapid successions of the same discussion moves: monitoring, 

selecting, sequencing, and connecting. This structure is made feasible by the use of 

typical problems, which generally take a shorter time to complete. In the rest of the paper, 

we focus on how typical problems can be set up differently for orchestrating discussions 

in the classroom to develop relational understanding by using the idea of variation. 

4. Harnessing variation 

The variation theory proposed by Marton (2014) uses a phenomenographic approach. 

The key idea is that learners will notice what is varying against a background of 

invariance. If too many things vary then individual variation is obscured (Watson & 

Mason, 2005). The implication for teachers is that mathematics tasks should be designed 

so that the desired content (known as the critical aspect in the theory) is varied and 

learners can see this and the effects of such variation in successive examples (Watson & 

Thompson, 2015). This critical idea has been termed the object of learning by Marton and 

Pang (2006). The object of learning includes the direct object of learning (content) and 

the indirect object of learning (capability of using that content). The teacher’s role is then 

to create a pattern of variation and invariance, with the object of learning in mind, which 

the student must experience to learn. This pattern of variation and invariance is 

distinguishable more readily in a typical problem than in the so-called ‘rich tasks’ 

(Grootenboer, 2009). 
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The pattern of variation and invariance is better discernable in typical problems 

possibly because these problems offer more opportunities for “repetition by 

systematically introducing variations” (Wong, 2008, p. 977). As argued by Wong, Lam, 

Sun and Chan (2009), this form of repetitive learning, common in China and other East 

Asian countries, differs from rote learning. The difference lies in teaching with variation, 

practised in the form of bianshi (变式) teaching in China since the 1980s. While the 

pedagogy of variation emphasises concept development, bianshi teaching enhances 

problem-solving (Gu, Huang & Marton, 2004). We view bianshi as a form of variation, 

and follow the distinction made by Gu et al. (2004) between conceptual and procedural 

bianshi. Building on this notion, there are four basic types of bianshi: inductive, 

broadening, deepening, and applying (Wong, Lam & Chan, 2013).  

In inductive bianshi, teachers use a series of carefully selected examples or situations 

for students to discern the critical features of a concept or skill. Teachers may use real-

life examples of housing loans, hire purchases, and investments to highlight the idea of 

compound interest. Students develop the basic formula of compound interest accrued 

annually by examining each example. Following this, students consolidate their 

understanding by experiencing variations, or broadening bianshi introduced into the tasks 

by teachers. The aim of these tasks is not to introduce new concepts, but to see instances 

or uses of the concept to be learned. Examples of such tasks may include questions 

involving annual compounding of interest in a variety of contexts. In contrast, deepening 

bianshi aims to expand student understanding by varying certain aspects of the 

mathematical concept or skill. For instance, students can deepen their understanding of 

the compound interest formula when they are exposed to questions in which the interest 

rates are not annual interest rates, and the compounding frequencies are no longer 

annually. Finally, teachers use applying bianshi to promote students’ application of their 

new understanding to solve a variety of more realistic problems involving the notion of 

compounding.  

We focus on variations as a lens to investigate what teachers notice about 

mathematics in typical problems. We present the case of John (pseudonym), an 

experienced teacher, to highlight the use of these problems to develop relational 

understanding. We describe how John sequenced a set of similar typical problems, 

harnessing on slight variations between the problems in his move from teaching for 

instrumental understanding to teaching for relational understanding. 

5. Context for the case of John  

This study draws on data collected from a larger design-based research (Design-

Based Research Collective, 2003) aimed at developing a toolkit to support teachers in 

noticing relevant instructional details, and refining a theory to describe their noticing 

when orchestrating learning experiences. We went through three iterative cycles of 

theory-driven design, classroom-based field testing and data-driven revision of the 

Mathematical Learning Experience Toolkit (MATHLET) to provide a theoretical 

justification for the underlying analytical frameworks. Four experienced mathematics 

teachers from three secondary schools, with different achievement bands and 

demographic factors, participated in this project. In each design cycle, the teacher 

participants designed and implemented a lesson of their choice using the MATHLET. 

This resulted into 12 design cycles across three schools. Data consisted of voice 
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recordings of planning, pre-lesson and post-lesson discussions, video recordings of 

lessons and lesson artifacts. By collaborating with teachers in designing, implementing 

and reviewing learning experiences using the MATHLET, we aimed to develop a deeper 

understanding of how teachers orchestrate mathematically meaningful learning 

experiences in different classroom contexts. Findings were then developed using a 

“thematic approach” (Bryman, 2012, p. 578) together with the two characteristics of 

productive noticing as proposed by the FOCUS Framework (Choy et al., 2017). John is 

one teacher of the project who used typical problems in his teaching with variations. 

John is an experienced mathematics teacher who has been teaching high-achieving 

students for more than 20 years. He has a strong subject mastery with a Master degree in 

Mathematics and an Honours degree in Computer Science. John is proficient in the use of 

technology for teaching, especially graphing calculators. As a Senior Teacher in his 

school, John has also demonstrated pedagogical content knowledge, and actively engaged 

his colleagues in professional development. In many ways, John’s beliefs about 

mathematics teaching and learning reflect that of a connectionist teacher in numeracy 

(Askew, Rhodes, Brown, William & Johnson, 1997). He wants his students to be aware 

of the diversity of methods and know when to use them. For example, during our 

interview with him, he mentioned how he had focused on creating learning experiences 

for students where they had opportunities to reason about the most appropriate method: 

A simple thing like prove that ABCD is a parallelogram. I can do it using 

geometry, just draw it out and show you that it is a parallelogram. I can do it 

using vectors; I can using coordinate geometry. Same question, three different 

approaches. Which one do you choose? Now, that is the- so therefore the students 

thinking processes, how do I choose the correct, or the most applicable, method 

to answer that question and then answer it? 

In addition, John sees the mathematics curriculum as a connected whole and makes 

connections with other topics. In his teaching, he tries to highlight how a single question 

can be solved using different approaches, drawing on connections between topics. 

Thirdly, he emphasises on understanding the concept underpinning the procedures. In one 

post-lesson discussion, he termed his notion of concept underpinning the procedures as a 

“procedural concept”: 

So we always wonder, let's say for example I give a question, let's say for 

example um. . . um, x squared minus 5x plus 6 equals to zero. Our teachers 

always tell our kids not to bring things over, keep right-hand side to zero. Why? 

Why do I keep the right-hand side to zero? 

John’s idea of a procedural concept can be seen from his emphasis on understanding 

the reasons behind the procedure of “keeping the right-hand side to zero”, which is 

usually not expected at that level of study. His thinking reflects a connectionist belief 

aligned with his goal to teach the key ideas of mathematics—to highlight connections 

between mathematics and real life problems, and between mathematical topics within and 

beyond the secondary school levels.  

The vignettes, developed from video and voice recordings of two lessons observed at 

a Secondary Three (Grade 9) classroom in Spring Hill School (pseudonym), are 

illustrations of what John typically does as he comes to the end of a topic. The first 
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vignette focuses on a lesson on compound interest, where John tried to convey the 

meaning of the variables in  

P = 
1

100

n
r 

+ 
    

P refers to the principal sum, r the interest rate for a given compounding frequency, 

and n the number of times interest is compounded. He tried to direct students’ attention to 

situations with use of different compounding frequencies and rates. The second vignette 

highlights a revision lesson on solving trigonometric equations through a sequence of 

four illustrative examples. In this lesson, John drew on what he noticed about students’ 

mistakes and designed four trigonometric equations for students to work on:  

3sin 4cos 0 + = ,3sin 4cos 1 + = ,
23sin 4cos 1 + = , 3sin2 4cos 0 + =  

The two lessons took place almost six months apart, but John’s approach of 

harnessing variations was similar.  

6. Two vignettes of harnessing variations 

Compound Interest Vignette 

John had taught how to find simple interest and compound interest. He recalled the 

formulae for a quick review and proceeded to deepen the understanding of the compound 

interest formula. 

John: … You invest $10,000 in an account that gives 3% per annum, compounded annually. 

Before you do anything, ask yourself one question. What is the keyword you must look 

for here? [writes the duration to be 5 years] 

S1     : Compounded 

John: Correct. Compounded annually. That's the first keyword. Give me the second keyword. 

S2     : Per annum. 

John: Sorry? Correct, per annum. Why is this important? Sorry? 

S3     : Compounding once per year.  

John: Correct, excellent. You must make sure that the annual compounding and the rate is the 

same duration. You must be very careful. We'll see why in a little while. Let's now work 

this out. So, what's your answer? Your total will be... Give me the formula, I don't want 

the answer, you know the answer, I want the formula. 

S4    : [uses the appropriate numbers in the compound interest formula and reads it for John] 

John: 10,000 times 1 plus 3 over 100... very good. Answer please? 11592.74. Exactly correct to 2 

dp. Very good. Now, let's change the question. What if I told you, I don't want to 

compound annually. I want to compound quarterly. 

S5    : Divide the rate into 4. 

John: Aha! So! Very good, this is 3% per annum compounded annually. Now, it's per annum 

compounded quarterly. So what happens? Your time is now shortened by a factor of 4, 

which means that the rate must also be factor of 4. Very good. So your total will be 

10,000, 1 plus...times? Sorry? What's wrong? Sorry? 

S6     : You're calculating in quarters. 
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John: Because, yeah correct, because you're compounding quarterly right, so there are how many 

quarters in 5 years? Because remember? The rate was per quarter, this is quarter, this is 

quarter, right? Therefore you must make sure that the 2 rates have the same timeframe. 

So answer please, someone? 116114 to 2 dp. Very good. Now, one last question. Can you 

now tell me - ok, what if I told you this? 3% per annum compounded quarterly, quarter. I 

want 3% per quarter compounded quarterly. So what's the formula? 

As seen from his exchange with the students, John made a series of subtle, yet critical 

changes to the interest rate problems to highlight how students should make adjustments 

to the formula for compound interest. He started by varying the compounding frequency 

from annual to quarterly to bring forth the necessary changes to the formula, before 

moving to other changes involving the interest rates. Here, we see how John used the idea 

of bianshi to support students in understanding the different components of the formula. 

Trigonometric Equation Vignette 

John wrote four trigonometric equations on the board (Figure 2) and asked the 

students to discern the differences: 

What I've noticed yesterday was as you were doing the work, you know how to 

start, but when you get to a point you got confused because you don't know how 

to continue. Now let's go uncover these 4 questions. Now, take the first 2 minutes 

in each group, 3 of you, tell me what are the main differences in all 4 questions. 

Don't give me cosmetic differences. Oh, this got plus got minus got this...don't 

need. I don't want cosmetic, I want theoretical, conceptual differences, ok? So 

ask yourself 2 questions. Number 1, when you do trigonometry, what are the 2 

most important things to remember? Number 2, when you do trigonometry, what 

are the other considerations that you must account for when you solve a 

trigonometric equation. Those are the first 2 questions. 1 minute, talk, buzz, go. 

Figure 2 shows that the four equations look similar but are structurally different. The 

difference between the first ( 3sin 4cos 0 + = ) and the second ( 3sin 4cos 1 + = ) lies 

in the number on the right-hand side. This variation changes the structure and solution 

method. In the first equation, students divide both sides by cos to obtain an equation 

containing only the tangent function. The second equation requires them to transform the 

equation into sin( ) 1R  + = . 

 

Figure 2. John’s selection of the four trigonometric equations 
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John wanted his students to pay attention to the change in structure and solution 

method. He opens up opportunities to see the difference for themselves, and to 

understand why they cannot divide both sides by cos for the second equation: 

John: Finished? Ok, method, answer? 

SA: The first one is tangent. 

John: Wait, no, no, yeah but what makes it different? What makes the difference? 

SB: Because it's value of...  

John: Sorry? Yeah so? 

SC: Yeah then there's sine and cosine, so you can become tangent. 

John: So why can't I do that for the second one? 

SD: Second one is 1. 

John: So? So why cannot, tell me, why can't you do it? 

SE: Huh, because the value will jump. 

John: So? What's the problem? 

SF: When you manipulate you cannot do the division... 

John: 
Can... why you divide by 1? You divide by cos right? So why can't do 3 tan  

plus 4 equals um... 

SG: Because that will give you 2 different... 

John: So why can't I do that here? 

SH: Because there's the 1. 

John: 

But can become [secant] mah. You mean can't become [secant] ah? You mean you 

cannot solve this? You mean this one I cannot solve? Then? Then? What's wrong with 

this? no no I understand your reason, I'm not saying you're wrong, but my question is,  

you say I cannot divide by cos , right? But I can, you can solve this, because  

this will simply be... So it's not impossible. So, but why is it - it's not easy this time? … 

SI: 1 tangent. 

John’s use of the four equations is an example of bianshi, which involves both 

conceptual and procedural elements. For instance, John tried to get students to see 

through the surface structural differences (i.e., 0 versus 1 on the right-hand side) and 

understand the key to solving trigonometric equations—to reduce the equation into one 

with a single trigonometric function (conceptual). In the third and fourth equations, John 

varied the equations by introducing a squared term in the third and a change in angle in 

the fourth, while maintaining some similarities with the previous equations. Although this 

change in the structure of the equation requires students to use a different solution 

method (procedural), John wanted them to see that the key idea of solving trigonometric 

equations remains the same (conceptual). This excerpt is typical of how John orchestrates 

the mathematical discussions during his lessons. His practice of conducting discussions 

reflects a connectionist’s belief in that he uses “focused” discussions to “help pupils 

explore efficient strategies and interpret the meaning of mathematical problems” (Askew 

et al., 1997, p. 32).  

7. Discussion and conclusion 

The two vignettes above show how John harnessed the idea of teaching with 

variations or bianshi to develop relational understanding. In the Compound Interest 

Vignette, John used a rapid succession of scenarios, which involves compounding 

frequencies and the kind of interest rate given, to deepen student understanding. Building 

on the standard formula from textbooks for compound interest, he used a sequence of 
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short questions involving these variations to highlight the corresponding changes to the 

formula. This is different from what many would term as “rote learning” because of his 

emphasis on the reasons behind differences in the procedures. His choice of questions 

and the sequencing were deliberate to reflect the key idea behind the formula. He used his 

assessment of student understanding to design a series of questions: 

Um, right now what I do is, because I know what concepts, what procedural 

concepts I'm testing today, I can then analyze um, so the question I will set will 

be based on that one skill. So every assessment I give them, every question I set 

them will have a specific skill that I'm testing. Either a specific concept, or a 

specific algebraic manipulation skill that I'm testing. Every question will have 

something that I'm looking for. 

By seeing how the compound interest formula varies given the r and the 

compounding frequency, John used short questions to highlight the key point he was 

trying to teach. His use of typical problems with slight variations aimed at deepening 

student understanding of the formula beyond developing procedural skills. This is an 

example of his use of typical problems by harnessing deepening bianshi.  

In the Trigonometric Equation Vignette, John used a series of four typical problems 

to highlight differences in the structures of the four equations, and guided students to 

notice the strategies in solving trigonometric equations. He used four similar questions 

that vary in the structure, while keeping the coefficients of sin  and cos  constant. He 

deliberately designed the four equations to illustrate the four basic types of trigonometric 

equations common in examinations. However, John went beyond preparing students for 

examinations by highlighting the thinking processes required to solve trigonometric 

equations. The design of the equations support students to make sense of the structural 

differences in the equations and connect these differences to the corresponding solution 

methods. This is especially so for the first equations, which look similar but their solution 

methods are different. John wanted to broaden student understanding of the solution 

methods by raising awareness of structural differences.     

As seen in the two vignettes, John noticed his students’ errors and was cognisant of 

the key idea for the lesson. For example, in the Compound Interest Vignette, John used 

his insights into students’ understanding and possible confusion, and designed the 

sequence of short questions to denote what is invariable in the questions (“the two rates 

have the same timeframe”). Similarly, in the Trigonometric Equation Vignette, he 

designed the four questions around what students had previously found to be challenging. 

During the post-lesson interview after the review lesson, John highlighted his thinking 

and reasons for designing the four questions: 

I know that for that class, because I know where their problems are, I know 

which problems will cause them problems. So if I give them a simple question, 

for example, 3 sin equals to 4 cos , oh they can solve that no problem, they 

can definitely do that without an issue. But the minute I change something else or 

I add a constant to it, if I add something else to the whole thing, if I change the 

double angle for example, they find that part very very uncertain. 

Besides noticing the specificities of content and confusion when learning the topics, 

John perceived the affordances of typical problems and considered how he could 

harnessed the types of variation to address errors. John was able to reason about his 
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modification or choice of typical problems. Hence, John’s noticing is productive as he 

harnessed the idea of variations or bianshi in his use of typical problems to teach for 

relational understanding (Choy et al., 2017).  

 In terms of orchestrating discussions, John used a series of short, focused questions 

to engage his students. While John’s questioning may be similar to the classic Initiate-

Respond-Evaluate pattern (Greeno, 2003), he listened to students’ responses and guided 

them based on what they were thinking. As a result, his questioning is more focusing 

rather than funnelling (Wood, 1998). He achieved this focusing through the deliberate 

sequencing of the problems modified. He listened to students and responded to further 

their relational understanding. This is more evidence for considering John’s noticing 

productive (Choy et al., 2017).   

John harnessed the idea of variations or bianshi by making deliberate modifications 

to typical problems for broadening and deepening student understanding of the skills. He 

tried to guide students in making connections between the procedural skills and the 

concepts they had learned. His use of typical problems was characterised by deliberate 

changes to the structure of the chosen problems to highlight specific aspects of the 

concept or skill. This stands in contrast to Alice, as described in our earlier work (Choy & 

Dindyal, 2017b). In the case of Alice, she modified the typical problems to open up the 

solution space, which provided opportunities for students to use different methods to 

solve the problem. Alice used students’ responses to the typical problems to develop 

relational understanding by connecting their responses to key mathematical ideas in the 

same topic. Hence, we see two different approaches to using typical problems for 

developing both procedural skills and conceptual understanding.  

In his interview, John highlighted how he unpacked the curriculum by thinking more 

deeply about what students were supposed to learn beyond the skills. He paid attention to 

the specific concepts, conventions, results, techniques, and processes in a given topic 

(Backhouse et al., 1992). Similar to Alice, John attended to the structure of a unit by 

thinking of it as a sequence of lessons, which comprised of a sequence of tasks, and 

considered how he could encapsulate the mathematics in the tasks. He was aware of the 

connections between the concepts within and beyond the topic. While acknowledging 

that he is an experienced teacher, we believe that other teachers can develop such 

professional vision—productive noticing of the curriculum. To this end, we propose three 

approaches for future research: 

Beyond learning new content. Rather than learning new content, there is an issue with 

using teachers’ knowledge to delve deeper into school mathematics. It is more about 

supporting teachers to use what they know, and guiding them to see new connections 

between aspects of the mathematics they are teaching. It is about guiding them to see the 

forest and the trees. Teachers need to have opportunities to zoom in and out of the 

curriculum, and notice systematically its details (Mason, 2011). In particular, they have to 

learn how to attend to the whole curriculum; discern the details of the concept; seeing the 

teaching of this concept in a sequence of lessons; conceptualising a lesson as a sequence 

of tasks, and encapsulating the mathematics within the tasks, paying attention to inter 

typical problem differences. 
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Typical problems. The omnipresence of typical problems offer opportunities for 

teachers to enhance student learning experiences in a more pervasive manner. We see one 

area of potential professional development in supporting teachers to notice the 

affordances of typical problems. There are at least two ways to think about the 

affordances of typical problems. First, as in Alice’s way of modifying problems to 

expand solution space. This approach provides multiple entry points for different groups 

of students. Next, as described in this paper, John modified the problem to restrict the 

solution space to specific cases. This “zooming in” allows teachers to highlight the 

critical features of the concept. Both ways to think about typical problems are critical if 

we want to use them for developing relational understanding. 

Conversations about students thinking. Many professional development approaches 

have centred on having professional conversations about teaching and learning. However, 

not all conversations are productive for enhancing student thinking. As argued by Lee 

and Choy (2017), it is crucial for teachers to focus on specificities of the concept, what 

students find difficult when learning the concept, as well as teachers’ approaches to 

address these learning challenges. Choy et al. (2017) highlight the importance to notice 

the alignment between the triad of teaching and learning—content, student thinking, and 

teacher actions. Focused conversations should be supported in order to harness the 

potential of typical problems for enhancing student learning.  

Although the examples used in this paper came from a single teacher, we have seen 

similar approaches from other teachers in our studies. While we acknowledge that some 

teachers use typical problems in a limited fashion, we see potential in exploring and 

enhancing the use of such problems to develop conceptual understanding. The idea of 

teaching with variations (Gu et al., 2004) provides one avenue to explore this fertile 

terrain.  

References 

Askew, M., Rhodes, V., Brown, M., William, D., & Johnson, D. (1997). Effective 

teachers of numeracy: report of a study carried out for the Teacher Training Agency. 

London, UK: King's College, University of London. 

Backhouse, J., Haggarty, L., Pirie, S., & Stratton, J. (1992). Improving the learning of 

mathematics. London, UK: Cassell. 

Bryman, A. (2012). Social research methods (4th ed.). New York: Oxford University 

Press. 

Choy, B. H. (2016). Snapshots of mathematics teacher noticing during task design. 

Mathematics Education Research Journal, 28(3), 421-440.  

Choy, B. H., & Dindyal, J. (2017a). Noticing affordances of a typical problem. In B. 

Kaur, W. K. Ho, T. L. Toh & B. H. Choy (Eds.), Proceedings of the 41st Conference 

of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 

249-256). Singapore: PME. 

Choy, B. H., & Dindyal, J. (2017b). Snapshots of productive noticing: orchestrating 

learning experiences using typical problems. In A. Downton, S. Livy & J. Hall 



B. H. Choy, J. Dindyal 

AIEM, número 13, mayo de 2018 
35 

(Eds.), Proceedings of the 40th Annual Conference of the Mathematics Education 

Research Group of Australasia (pp. 157-164). Melbourne, Australia: MERGA. 

Choy, B. H., Thomas, M. O. J., & Yoon, C. (2017). The FOCUS framework: 

characterising productive noticing during lesson planning, delivery and review. In E. 

O. Schack, M. H. Fisher & J. A. Wilhelm (Eds.), Teacher noticing: bridging and 

broadening perspectives, contexts, and frameworks (pp. 445-466). Cham, 

Switzerland: Springer. 

Design-Based Research Collective (2003). Design-based research: an emerging paradigm 

for educational inquiry. Educational Researcher, 32(1), 5-8.  

Foong, P. Y. (2009). Review of research on mathematical problem solving in Singapore. 

In K. Y. Wong, P. Y. Lee, B. Kaur, P. Y. Foong & S. F. Ng (Eds.), Mathematics 

education: the Singapore journey (pp. 263 - 300). Singapore: World Scientific. 

Franke, M. L., Kazemi, E., & Battey, D. (2007). Understanding teaching and classroom 

practice in mathematics. In J. F. K. Lester (Ed.), Second handbook of research on 

mathematics teaching and learning (pp. 225-256). Charlotte, USA: Information Age 

Publishing. 

Gibson, J. J. (1986). The theory of affordances. The ecological approach to visual 

perception. Hillsdale, USA: Lawrence Erlbaum Associates. 

Greeno, J. G. (2003). Situative research relevant to standards for school mathematics. In 

J. Kilpatrick, W. G. Martin & D. Schifter (Eds.), A research companion to principles 

and standards for school mathematics (pp. 304-332). Reston, USA: NCTM. 

Grootenboer, P. (2009). Rich mathematical tasks in the Maths in the Kimberly (MITK) 

project. In R. Hunter, B. Bicknell & T. Burgess (Eds.), Proceedings of the 32nd 

Annual Conference of the Mathematics Education Research Group of Australasia 

(Vol. 1, pp. 696-699). Palmerston North, New Zealand: MERGA. 

Gu, L., Huang, R., & Marton, F. (2004). Teaching with variation: a Chinese way of 

promoting effective mathematics learning. In L. Fan, N.-Y. Wong, J. Cai & S. Li 

(Eds.), How Chinese learn mathematics: perspectives from insiders (pp. 309-347). 

Singapore: World Scientific. 

Henningsen, M., & Stein, M. K. (1997). Mathematics tasks and student cognition: 

classroom-based factors that support and inhibit high-level mathematical thinking 

and reasoning. Journal for Research in Mathematics Education, 28(5), 524-549.  

Ho, K. F., & Hedberg, J. G. (2005). Teachers’ pedagogies and their impact on students’ 

mathematical problem solving. The Journal of Mathematical Behavior, 24(3-4), 238-

252. 

Lee, M. Y., & Choy, B. H. (2017). Mathematical teacher noticing: the key to learning 

from Lesson Study. In E. O. Schack, M. H. Fisher & J. A. Wilhelm (Eds.), Teacher 

noticing: bridging and broadening perspectives, contexts, and frameworks (pp. 121-

140). Cham, Switzerland: Springer. 



An approach to teach with variations: using typical problems 

AIEM, número 13, mayo de 2018 36 

Loughran, J., Keast, S., & Cooper, R. (2016). Pedagogical reasoning in teacher education. 

In J. Loughran & M. L. Hamilton (Eds.), International handbook of teacher 

education (Vol. 1, pp. 387-421). Singapore: Springer. 

Marton, F. (2014). Necessary conditions of learning. London, UK: Routledge. 

Marton, F., & Pang, M. F. (2006). On some necessary conditions of learning. The Jounal 

of the Learning Sciences, 15(2), 193-220. 

Mason, J. (2002). Researching your own practice: the discipline of noticing. London, 

UK: Routledge Falmer. 

Mason, J. (2011). Noticing: Roots and branches. In M. G. Sherin, V. R. Jacobs, & R. A. 

Philipp (Eds.), Mathematics teacher noticing: seeing through teachers' eyes (pp. 35-

50). New York: Routledge. 

Mason, J., & Johnston-Wilder, S. (2006). Designing and using mathematical tasks. Saint 

Albans, UK: Tarquin Publications. 

Sánchez, V., & Llinares, S. (2003). Four student teachers' pedagogical reasoning on 

functions. Journal of Mathematics Teacher Education, 6(1), 5-25.  

Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (Eds.). (2011). Mathematics teacher 

noticing: seeing through teachers' eyes. New York: Routledge. 

Shulman, L. S. (1987). Knowledge and teaching: foundations of the new reform. Harvard 

Educational Review, 57(1), 1-22. 

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: from 

research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350.  

Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating productive 

mathematics discussions. Reston, USA: NCTM. 

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating 

productive mathematical discussions: five practices for helping teachers move 

beyond show and tell. Mathematical Thinking and Learning, 10(4), 313-340.  

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for 

mathematical thinking and reasoning: an analysis of mathematical tasks used in 

reform classrooms. American Educational Research Journal, 33(2), 455-488.  

Sullivan, P., Askew, M., Cheeseman, J., Clarke, D., Mornane, A., Roche, A., & Walker, 

N. (2014). Supporting teachers in structuring mathematics lessons involving 

challenging tasks. Journal of Mathematics Teacher Education, 18(2), 123-140.  

Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: learners 

generating examples. Mahwah, USA: Lawrence Erlbaum Associates. 

Watson, A., & Thompson, D. (2015). Design issues related to text-based tasks. In A. 

Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 143-190). 

New York: Springer. 

Wong, N.-Y. (2008). Confucian heritage culture learner’s phenomenon: from “exploring 

the middle zone” to “constructing a bridge”. ZDM, 40(6), 973-981.  



B. H. Choy, J. Dindyal 

AIEM, número 13, mayo de 2018 
37 

Wong, N.-Y., Lam, C. C., & Chan, A. M. Y. (2013). Teaching with variation: bianshi 

mathematics teaching. In Y. Li & R. Huang (Eds.), How Chinese teach mathematics 

and improve teaching (pp. 105-119). New York: Routledge. 

Wong, N.-Y., Lam, C. C., Sun, X., & Chan, A. M. Y. (2009). From "exploring the middle 

zone" to "constructing a bridge": experimenting in the spiral bianshi matheamtics 

curriculum. International Journal of Science and Mathematics Education, 7(2), 363-

382.  

Wood, T. (1998). Alternative patterns of communication in mathematics classes: 

funnelling or focusing? In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska 

(Eds.), Language and communication in the mathematics classroom (pp. 167-178). 

Reston, USA: NCTM. 

Yang, Y., & Ricks, T. E. (2012). How crucial incidents analysis support Chinese Lesson 

Study. International Journal for Lesson and Learning Studies, 1(1), 41-48.  

Zaslavsky, O. (1995). Open-ended tasks as a trigger for mathematics teachers' 

professional development. For the Learning of Mathematics, 15(3), 15-20.  

 

References of authors 

Ban Heng Choy, National Institute of Education, Nanyang Technological University, 

banheng.choy@nie.edu.sg  

Jaguthsing Dindyal, National Institute of Education, Nanyang Technological University, 

jaguthsing.dindyal@nie.edu.sg  

 

An approach to teach with variations: Using typical problems  

Ban Heng Choy, National Institute of Education, Nanyang Technological University  

Jaguthsing Dindyal, National Institute of Education, Nanyang Technological University  

 

Mathematics teachers use typical problems from past examination papers and textbook 

exercises to develop procedural skills. In this paper, we discuss other uses of typical 

problems through the following research questions: (1) What affordances do teachers 

perceive in typical problems, and (2) How do they use typical problems in the classroom 

to enhance student learning? We focus on the affordances that an experienced teacher, 

John, perceives in typical problems and how he uses them to enhance student learning by 

harnessing the idea of teaching with variations or bianshi. Drawing on data from a larger 

qualitative design-based research on investigating teacher noticing, we present snapshots 

of John’s classroom practices to show what he noticed about the variations afforded by 

typical problems and how he used these problems with students to promote both 

procedural skills and conceptual understanding. Findings suggest the value of supporting 

teachers in harnessing variations of typical problems, which has implications for teacher 

education and professional development. While we acknowledge that some teachers use 

typical problems in a limited fashion, we see potential in exploring and enhancing the use 
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of such problems to develop conceptual understanding. We importantly acknowledge the 

development of future research regarding the need to: i) Support teachers to use what 

they already know by means of establishing newer connections rather than learning 

further content. ii) Enhance opportunities for teachers to enhance student mathematics 

learning based on the affordances of typical problems. iii) Develop contexts for 

professional conversation about student mathematical thinking that focus on specificities 

of the concepts of teaching and learning.   


