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Diseño de tareas en la Teoría APOE  

Resumen 

Este trabajo discute el papel del diseño de tareas en la Teoría APOE. Se discute el papel que juega 

la descomposición genética en la teoría y en el diseño de tareas. Se muestra un ejemplo de 

descomposición genética para los conceptos de transformación matricial inversa  y matriz inversa. Se 

proporcionan ejemplos que se diseñaron con dicha descomposición genética junto con una descripción 

de su relación con la misma a fin de dar una idea de cada una de las tareas y la construcción detallada 

y específica que tiene como objetivo. Se discute el papel de las tareas en el aula dado que la combinación 

del trabajo colaborativo de los estudiantes en secuencias de tareas y en la discusión en grupo constituyen 

la base de la Teoría APOE en la que se fundamenta su potencial para promover las construcciones 

necesarias para el aprendizaje profundo de los conceptos matemáticos.  

Palabras clave. Diseño de tareas; Teoría APOE; transformación inversa; matriz inversa.  

 

Task design in APOS Theory 

Abstract 

This paper discusses the role of task design in APOS Theory. The role played by the genetic 

decomposition in the theory and in task design is discussed. An example of a genetic decomposition for 

the concepts of inverse matrix transformation and inverse matrix is given. Tasks designed using this tool 

as a guide are exemplified as well as a description of their relationship to the genetic decomposition.  In 

this way we provide insights about each task and the specific detailed construction it has as its aim. The 

role of the tasks in the classroom is discussed since the combination of collaborative work of students in 

sequences of tasks and in group discussions are the foundation of APOS Theory’s potential to promote 

essential constructions needed for a deep learning of mathematical concepts. 

Keywords. Task design; APOS Theory; inverse transformation; inverse matrix. 

 

Projeto de tarefas na Teoría APOE 

Resumo 

Este artigo discute o papel do projeto de tarefas na teoria APOE. O papel da decomposição genética 

na teoria e no design das tarefas é discutido. Um exemplo de decomposição genética é mostrado para os 

conceitos de transformação inversa e matriz inversa. Exemplos que foram projetados com a referida 

decomposição genética são fornecidos juntamente com uma descrição de sua relação com ele, a fim de 

dar uma idéia de cada uma das tarefas e da construção detalhada e específica que ela tem como objetivo. 

O papel das tarefas em sala de aula é discutido, uma vez que a combinação do trabalho colaborativo dos 

estudantes em sequências de tarefas e em discussões em grupo constitui a base da Teoria APOE, que é 

isso que sustenta seu potencial de promover as construções necessárias para o aprendizagem profunda 

de conceitos matemáticos. 

http://www.seiem.es/
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Palavras chave. Projeto de tarefas; Teoria APOE; transformação inversa; matriz inversa. 

 

Conception de tâches dans la Théorie APOE 

Résumé 

Cet article discute le rôle de la conception de tâches dans la Théorie APOS. Le rôle de la 

décomposition génétique dans cette théorie et dans la conception des tâches est discuté. Un exemple de 

décomposition génétique est présenté pour les concepts de transformation inverse et matrice inverse. Des 

exemples conçus avec telle décomposition génétique sont fournis avec une description de leur relation 

avec celle-ci afin de donner une idée de chacune des tâches et de la construction détaillée et spécifique 

qu’elle a comme objectif. Le rôle des tâches en classe est discuté étant donné que la combinaison du 

travail collaboratif des élèves dans les séquences de tâches et dans les discussions en groupe constituent 

la base de la Théorie APOS, qui soutient son potentiel pour promouvoir les constructions nécessaires 
pour un apprentissage approfondie des concepts mathématiques. 

Paroles clés. Conception des tâches; Théorie APOS; transformation inverse ; matrice inverse. 

 

1. Introduction 

Task design is a common practice in mathematics education that can serve very 

different purposes. It can aim at building and/or consolidating knowledge and 

connections, engaging students in activities such as proving and conjecturing, revealing 

students’ conceptions and misconceptions, even the most hidden ones (Sierpinska, 

2004); creating a cognitive conflict to motivate progression in mathematical thinking 

(Aguilar & Oktaç, 2004); promoting argumentation (Schwarz & Linchevski, 2007); 

enhancing professional development of mathematics educators (Zaslavsky & Leikin, 

2004); getting an idea about students’ stance or intuitive responses about a particular 

topic and creating classroom discussions (Cline et al., 2013); creating a setting with the 

purpose of witnessing construction of knowledge taking place (Oktaç, 2019); promoting 

students’ creativity (Lithner, 2017); helping teachers in organizing their class work 

(Lesh, et al., 2008), as well as assessing knowledge and abilities (Trgalová et al, 2014). 

Despite the many purposes that task design serves in research and in teaching, as 

Sierpinska (2004) points out, the majority of studies do not comment about the strategies 

behind task design or variables involved in this process; therefore many aspects remain 

obscured and this is of little help to the rest of the community. An exception is research 

conducted from the viewpoint of theoretical frameworks in which task design plays a 

fundamental role, such as APOS Theory, realistic mathematics education (see Doorman, 

this issue) and theory of didactical situations (see García et al., this issue). 

Sierpinska (2004) considers a task to be different from a problem in that a task 

involves only the minimum necessary effort in order to complete it (student’s attitude), 

whereas a person who is engaged in solving a problem displays an independent 

intellectual’s attitude. Although there might be some connotations attached to these 

terms, for the purposes of this paper, we will not distinguish between them. For us a 

mathematical task, problem situation or activity can involve varying degrees of depth of 

mathematical knowledge and reasoning, as well as connections with concepts in non-

mathematical domains, depending on the research or teaching goals pursued. Our focus 

will be, from an APOS perspective, on the design principles that motivate the 

construction of specific concepts. Having clarified this point, we agree with Sierpinska 

in that “the design, analysis and empirical testing of mathematical tasks” is “one of the 

most important responsibilities of mathematics education” (p. 10). 
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The purpose of this paper is to describe the role and value of task design in APOS 

Theory, addressing the reasons behind the importance of task design in this theoretical 

framework, as well as the specific characteristics that tasks should hold in order to fulfill 

their purpose. In what follows, we first introduce APOS Theory briefly, focusing on the 

role of the genetic decomposition (GD) and the conception of task design in the theory. 

Next, we present some examples of tasks designed to guide students in the construction 

of inverse matrix transformation and inverse matrix concepts. We then present an 

example of the kind of interaction that can take place between the instructor and the 

students during a class discussion. We conclude with some reflections about the 

potential of task design based on APOS Theory and the role of the teacher in the class. 

2. APOS Theory and the design of activities 

APOS Theory is based on Piaget’s epistemology about how knowledge grows 

(Arnon et al., 2014). It can be described in terms of its theoretical elements called 

structures, namely, Action, Process, Object, Schema and the mechanisms involved in 

moving from one structure to another. Although these structures are listed as stages in a 

hierarchical sequence, knowledge construction does not necessarily happen in a linear 

fashion. The learner can go back and forth between different structures or stay within 

one as long as it is needed. Actions are defined as transformations applied to an Object, 

such as manipulating it or using it to perform a calculation, following an algorithm or 

applying a memorized procedure; they are perceived by the learners as external in the 

sense that the learners cannot justify the steps that they follow or predict the result of 

their application. By reflecting on an Action (or a series of Actions) and repeating it, an 

Action can be interiorized into a Process, which means that the learner starts perceiving 

the Actions as internal, can omit steps and anticipate the result of their application. New 

Processes can be obtained from previously constructed ones by the mechanism of 

coordination when two Processes interact, or by the mechanism of reversion to construct 

an inverse Process. The need to transform a Process may lead the learner to perform or 

imagine performing Actions on it and hence to its encapsulation as an Object. Objects 

can be de-encapsulated to the Process from which they were originated. A Schema is a 

coherent construction composed of Actions, Processes, Objects and other previously 

constructed Schemas that are related to the same mathematical concept or topic. 

Coherence is a quality of an individual’s Schema which implies that the learner is able 

to recognize when a problem situation falls within the scope of the Schema. The 

progression from one structure to another is dialectical in nature, which means that there 

can be passages back and forth between structures while knowledge is being constructed. 

According to APOS Theory, a student’s overall tendency to deal with problem 

situations in diverse mathematical tasks involving a particular mathematical concept 

depends on whether the student has constructed an Action, a Process or an Object 

conception of the concept or topic of interest or if a Schema is involved in the student’s 

approach. Construction of knowledge develops in a spiral manner by applying new 

Actions on previously constructed Objects, progressively converting them into 

Processes, new Objects and Schemas.  

A central component of APOS Theory is what is called a genetic decomposition, 

which is a hypothetical epistemological model describing the structures and mechanisms 

involved in constructing a mathematical concept or topic. As a theoretical conjecture, a 

GD predicts how a concept is constructed by a generic student; it must be experimentally 

tested and refined if necessary. There is no claim that there is a unique GD, that is, there 

is no pretension in the theory to describe how exactly a concept is constructed; several 
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GDs can exist (see for example Roa-Fuentes & Oktaç, 2010), but it is important that any 

proposed GD is tested experimentally with learners. The design of a GD involves 

reflection on the mathematics itself, on the history of the concept, on the experience of 

researchers and on research findings in mathematics education. The GD influences not 

only the design of research instruments and analysis of data, it is also essential as a guide 

in the design of teaching tasks and sequences. 

Besides the description of the construction of mathematical knowledge, APOS 

Theory includes two methodological components that are also cyclical: A 

methodological cycle to test, refine and validate the proposed GD to make it compatible 

with research results obtained, and a teaching cycle known as the ACE cycle. This last 

cycle consists of the introduction of activities (A) for students to work collaboratively 

in small groups, whole class group discussion (C) and exercises (E) assigned as 

homework. Activities used in the teaching cycle need to be designed using the GD as a 

guide so that students have the opportunity to construct each one of the predicted 

structures and hence to learn what is being taught. 

APOS Theory has also been used together with modeling approaches in order to 

design situations, taking into account a GD related to the concepts at stake. Student work 

on these situations is intermingled with activities consisting of several tasks that guide 

students’ mental constructions and their modeling work (Trigueros, 2018). 

In what follows, we describe a GD designed to construct the concept of inverse of a 

matrix transformation (a matrix transformation TA (v) is a transformation such that TA 

(v) = Av, where A is a matrix, v is a vector and Av is defined), and the concept of inverse 

of the aforementioned matrix A. As we will exemplify later, this GD guided the design 

of tasks in a study, with the intention to foster students’ construction of the proposed 

structures in it. 

3. Genetic decomposition of the concept inverse of a matrix transformation 

We first mention the conceptions that we consider as being pre-requisites in order 

to construct the concept in question. However, before that, it might be necessary to make 

a distinction between these two notions: According to McDonald, Mathews and Strobel 

(2000) a conception “is intrapersonal (i.e., the individual’s idea or understanding)” and 

a concept “is communal (i.e. a concept as agreed upon by mathematicians)” (p. 78). 

3.1. Previous constructions 

• Matrix and vectors as Objects as well as operations on matrices and vectors as 

Processes including the matrix- vector product.  

• Vector transformation as a Process, which implies the possibility to identify for 

any vector v in the domain of a transformation T, a vector w=T(v) as its image 

under T. 

• Matrix transformation as a Process, that can be seen as an important example 

of a vector transformation (Figueroa, Possani & Trigueros, 2018). 

• Function of real variable as a Schema, which includes a function Process 

allowing the identification of an inverse image, as well as connections with 

other concepts such as set and variable.  

• Systems of linear equations as a Process. 

• Linear independence and dependence of sets of vectors as Processes. 
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3.2. Construction of the inverse of a matrix transformation 

Since we are assuming that the students have constructed a function of real variable 

Schema as a prerequisite, they can now assimilate Rn as a set into this Schema as a valid 

domain/range, and hence think about finding the inverse of a transformation as a specific 

instance of an inverse function. However, if students have not constructed a strong 

function Schema, as it is commonly the case (Vidakovic, D. 1996; also see for example 

Baker, Cooley & Trigueros, 2000 and Cooley, Trigueros & Baker, 2007 for different 

levels of Schema construction), there might be other ways of imagining the inverse of a 

vector transformation. For example, the inverse function Process in the function of real 

variable Schema can be coordinated with the vector transformations Process through the 

recognition that the vector transformation as a correspondence rule may be reversed into 

a new Process that makes it possible to imagine the inverse of a vector transformation, 

and in particular, the inverse of a matrix transformation. 

This Process is coordinated with the Process of the matrix representation of a system 

of equations through the recognition that finding the entries of the unknown matrix B 

associated to the inverse matrix transformation requires the solution of several systems 

of equations and if those systems need to have a unique solution, a necessary condition 

for the original transformation matrix is to be a square matrix.  

This Process is repeated for different pairs of vectors (v,w), including the canonic 

vectors, and is coordinated with the linear independence Process by determining the 

conditions related to linear independence that have to be satisfied for matrix B to exist 

and be unique. 

The need to perform the Action of comparing the results obtained in the previous 

Process makes it possible to encapsulate this Process into the Objects inverse matrix and 

inverse matrix transformation. Specifically, if the set of vectors w coincides with the set 

of canonic vectors, where the simultaneous solution of the systems Av=e1…. Av=en is 

being searched, this construction is related to the Gauss- Jordan algorithm to find the 

inverse matrix. 

4. Examples of task design for the case of an inverse problem 

As part of a research project on teaching and learning linear algebra using models, 

the Blind source separation problem was used in an introductory linear algebra course 

at a private university in Mexico City. The modeling situation was expressed as follows:  

Three important politicians will have a meeting to talk about a secret topic. You are spies 
and want to know what they talk about; so you install some microphones to record the sound 

in the room where they will meet. After they leave the room, you have four recordings and 

a map of the room indicating where the politicians were seated. What can we do to know 

the place where each of the politicians was seated? 

Consistently with the ACE cycle, after some discussion in small groups of students 

about the task (which corresponds to the activity A in the cycle) including the 

importance of identifying each politician with their respective voices, students 

developed a functional model. With the aid of the teacher who asked questions such as 

Why did you consider that the form of the room is important? And the type of voice? and 

some experimentation done as a whole class discussion (which corresponds to C in the 

cycle), this model was extended to recognize the voice of each politician at an instant 

by means of a linear instantaneous mixture where voices are considered as pure tones. 

Students considered the distance between each source sj and the observation point as a 

very important parameter and explained that the distance depended on the location of 
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each source (politician), with respect to the observation location (microphone); they 

referred to the resulting map as a microphones’ configuration (Figure 1). Once a 

configuration was introduced as an example, students modeled the observation xi, as a 

mixture in terms of a linear combination of the sources where each coefficient aij could 

be considered as a function of the distance, d(ij)-2 , for a given configuration, that is xi = 

ai1s1 +ai2s2 +...+ aimsm,. They also thought that sources and observations could be 

considered as vectors. Work was done with different configurations and different 

numbers of sources partly in class and partly as exercises (A and E in the cycle), after 

which they ended up with a general model of m sources and n observations; and the 

functional model was transformed into a matrix transformation model. Since 

observations were known, students needed to find the sources, so they worked on finding 

the inverse transformation and the inverse matrix to solve the problem of separating the 

voices of the politicians. 

 

Figure 1. Microphone configuration with 4 sources (sj) and 3 observations (xi) 

It took two weeks for students to arrive at this model through experimentation with 

sound and different configurations. Students observed that the inverse transformation 

solves the problem, since given a configuration of sources and observations, the 

observation vector x is known at an instant and that it is possible to represent the mixture 

with a matrix transformation. They also observed that the frequency of the sources could 

be associated to a tone corresponding to a voice.  

Work on the task continued by another iteration of the ACE cycle. Students formed 

teams; their work on the modeling situation was accompanied by activities (A) based on 

the GD to help students to construct the inverse transformation and the inverse matrix. 

This was followed by a whole group discussion (C) where the teacher discussed 

students’ ideas and formalized the mathematics involved in the activities. At the end of 

each class students worked on similar exercises at home (E) so they had new reflection 

opportunities.  

Given this modeling context, we now present some examples of tasks that were 

prepared to guide students in the construction process. For each task we mention aspects 

that were taken into consideration in its design, as well as provide an a priori analysis 

in terms of the elements of APOS Theory. For an analysis of the results obtained by their 

application to students, see Vázquez Padilla (2017). 

1. An entrance vector s =  (
1
2
)  is mixed by a matrix (

2 −1
3 4

) producing the exit 

vector x = (
0
11
)  

a) Is it possible to find a matrix transformation that reverts the effect of TA? 

Explain. 

b) Suppose the new transformation is represented by a matrix B. What should be 

the size of B? How would you find it? 
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Question 1 was designed in terms of the modeling problem in order to stimulate 

students’ thinking about the possibility to find an inverse transformation in specific 

situations. They are expected to solve the inverse problem by using their knowledge of 

matrix- vector product and its relation to systems of equations. It also aims to direct 

students’ attention to more general situations by motivating them to reflect on properties 

of the solution sets of systems and on the characteristics of the matrix that should be 

satisfied in case it could be inverted. By working on several similar examples with 

varying conditions, students are expected to find the properties that would allow a matrix 

to be invertible. This is in line with the interiorization of Actions by repeating them and 

reflecting about them (Arnon et al., 2014). 

In terms of the theory, Question 1 asks students to perform Actions on the given 

information to reflect on the relationship between matrix transformation and inverse 

matrix transformation, as well as their connection to systems of equations. Reflection 

on different similar tasks with varying conditions and different sizes of matrices can lead 

students to focus on the functional character of transformations and to construct a 

Process resulting from the coordination of the transformation Process and the system of 

equation Process. This coordination involves reflection on the possibility to find the 

inverse transformation, and, by comparing the results obtained with different matrices, 

students also construct a Process related to conditions that matrices should meet to 

ensure that the inverse matrix exists. 

2a. If 𝐵 = (
𝑎 𝑏
𝑐 𝑑

) and you know that TB (
0
11
) = (

1
2
), is it possible to find B? How?  

2b. What would you need to know to make sure that you can find B?  

2c. Compare your previous responses and answer the following:  

      i) In which cases were you able to determine the inverse transformation TB? 

      ii) In which cases was it not possible?  

      iii) Is there a relation between the vectors x and the possibility to find B?  

These tasks ask students to perform specific Actions on the previously constructed 

Process with the intention to provide new opportunities of encapsulation of the inverse 

matrix transformation as an Object by specifying the properties shared by those 

examples when it is possible to find them. Examples of matrices of different sizes and 

including linearly independent or dependent columns and rows are used, both in 

activities during the lesson (A) and as exercises to work at home (E). After reflecting on 

the existence of the inverse transformation and the related matrix, tasks such as those 

exemplified here have the goal of promoting students’ reflection in a more general 

context, so that they can think about the existence conditions of an inverse matrix. The 

use of matrices of various sizes contributes to such reflection. It is expected that after 

completing the tasks students would have a first general idea of which properties a 

matrix associated to a matrix transformation should satisfy in order to be invertible. 

These tasks also involve the coordination of the Process of matrix transformation 

and that of systems of equations but aim at focusing students’ reflection on the 

conditions needed to find the inverse matrix and the inverse transformation. The Actions 

of interpreting the solution set and adding the conditions needed for it to be unique help 

the encapsulation of the Process resulting from the coordination, into an Object inverse 

matrix through the consideration of its properties. Repeating this task by varying the 

vectors involved using linearly independent or dependent vectors, including one zero 

vector or vectors that correspond to the column of the inverse matrix, promote 

opportunities to reflect on the construction of the inverse transformation Process 
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resulting from the preceding coordination. At the same time its coordination with the 

Process of linear independence and dependence through comparison of results obtained 

by using different matrices gives rise to a new Process where the existence of the inverse 

transformation can be determined without the need to perform all the involved 

calculations. Opportunities to encapsulate the Processes of inverse matrix 

transformation and inverse matrix as Objects are also provided. 

3. Suppose you need to find the inverse of the matrix                               

You have the following information options: 

Option 1: A(1, 1) = (1, -2), A(0, 1) = (1, -3) 

Option 2: A(3, 5) = (1, 0), A(1, 2) = (0, 1) 

a) Which one would you select to find the inverse matrix and the inverse 

transformation? Why? 

b) Is there a relation between the entrance data and the matrix A’s inverse? 

Explain. 

c) Find the inverse matrix for A, if possible, using your responses to the 

previous questions. If it is not possible, explain why. 

This and other similar tasks for different matrix transformations (A, E) have the aim 

to provide students with opportunities to think, before making any calculations, about 

what the result can be and how easy it would be to find the inverse of a given matrix. 

Also of interest is to motivate them to look for the inverse of a matrix, given information 

about the result of the application of a transformation to different vectors, as well as to 

compare results leading them to discover that if the inverse matrix exists, it is 

independent of the data used. Comparison of applying the same procedure with different 

data has the goal of making students aware of the differences involved in the procedure 

when vectors selected are easier to handle and to bring forward the role of canonic 

vectors when finding the inverse of a matrix. 

In terms of APOS Theory, reflecting on operations without actually carrying them 

out motivates the interiorization of Actions, whereas thinking about the properties that 

should be satisfied helps with the encapsulation of the related Process. The task is 

repeated for matrices of different sizes and with different properties. The goal is for 

students to compare, in terms of efficiency, the results of using different sets of 

information as well as to reflect on the existence of the inverse matrix by examining and 

comparing the properties of different matrices. Here we are using the word efficiency as 

related to the effort that goes into obtaining the same result by different methods; it does 

not belong to the terminology of APOS Theory, rather it emerges in the context of 

modeling activities. Comparison also favors the encapsulation of the Processes of 

inverse matrix transformation and the inverse of a matrix. It should be underlined that 

the choice and ordering of tasks is key in APOS Theory. 

 

4. Consider the following matrix transformation TA(s) =  

 

   By using what you have found before, find the inverse transformation. Analyze  

what you did.  

a) Is it possible to represent the transformation as a system of equations for 

each canonical vector? Find the representations if possible. 

b) Solve the systems using the Gauss-Jordan method; remember that it is 

possible to solve several systems simultaneously. Is there a relation 

between the systems’ solution and the inverse matrix? How do your results 

compare with what you did before? 

s 

(
2 −1
−5 3

) 
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The objective of this task, and other similar ones using for example the matrix 

 is to continue giving opportunities to students to reflect on the 

existence of an inverse transformation by using those properties they had found before 

and to discover that what they have done can be summarized in an efficient procedure 

to find the inverse of a matrix transformation and of a matrix. Many textbooks present 

this technique without clearly explaining students why it works. The previous tasks have 

prepared the students to give meaning to this procedure and to understand it in terms of 

the properties of the canonical vectors.  

The purpose of this task, in line with the GD, is to provide students with an 

opportunity to make use of what they have constructed so far in order to develop a 

technique to calculate the inverse matrix and the inverse transformation, with 

understanding. This way Actions can be interiorized into Processes, allowing students 

to have control over the method, helping them to understand how and why it works. This 

technique is usually presented in textbooks to find the inverse matrix without any 

relation to transformations and without explaining why this procedure works.  

5. Write down a summary about the possibility of existence of the inverse matrix 

transformation and about the conditions needed for its existence as well as the 

existence of the inverse matrix. 

The purpose of this task is to provide a new opportunity for students to reflect about 

all the constructions that they have made so far and contribute to the construction of new 

connections if they had not had the chance before.   

Work on the tasks presented above was intermingled with similar tasks referring to 

the modeling situation, so that at the end, the students would come up with responses to 

the original problem situation, with an understanding of how other similar inverse 

problems can be solved. 

It is important to underline that all the work done by students during the Activities 

phase of the ACE cycle are discussed at each turn of the cycle in a whole group 

discussion. During these sessions the teacher provides new opportunities for students to 

reflect on what they have been able to do and also on what they have not been able to 

do, in a way that aims at promoting new constructions. It is during these discussions that 

students are encouraged by the teacher to formalize their findings which in turn leads to 

the consolidation of the constructions shown by students so far.  

These tasks illustrate the value of a genetic decomposition as a tool to guide a careful 

and detailed design of sets of tasks that promote the construction of each of the predicted 

structures and mechanisms. Designing tasks to promote all the constructions described 

in a genetic decomposition represents a challenge to researchers and teachers; it is not 

an easy endeavor, but many studies using APOS Theory have found that once achieved, 

the tasks designed are not only original, but also powerful in helping students to 

construct the intended concepts and methods so they learn with meaning the intended 

mathematics. 

When modeling activities are introduced together with activities designed with the 

GD, the modeling tasks are intermingled with tasks that help students reflect on what 

they have constructed and its relation to the modeling situation. This strategy promotes 

the evolution of work on the modeling situation, and helps the students to realize the 

role played by hypothesis and the limitations of the model or models developed. 
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In accordance with APOS Theory, a GD needs to be validated in terms of students’ 

constructions. The one that we present in this paper was validated by means of analysis 

of student work on the activities (Vázquez Padilla, 2017), although no interviews were 

performed. In general, in APOS-related research, individual interviews are the preferred 

method of data collection, since they offer depth of observation and allow the 

interviewer to follow up with questions if needed. In a modeling environment however, 

it is important to let students work together and observe them while they are working on 

specially-designed tasks together. From the viewpoint of APOS Theory, if a GD does 

not coincide with the preliminary theoretical analysis it needs to be refined and new 

tasks would need to be developed in order to consider the new constructions included, 

and this GD as a whole would need to be experimentally tested.  

5. The role of the teacher: An example 

All the activities discussed in the previous section were worked out by the students 

in teams of 3 or 4 students. The teacher interrupted students’ work when they finished a 

set of activities related to each question shown before, and sometimes when she felt the 

need to discuss students’ specific questions and doubts. This type of interventions is 

fundamental in what is designed as class discussion (C) in the ACE cycle. In this section 

we provide an example of the kind of questions and comments of the teacher when 

discussing question 2 (T stands for teacher, and S followed by a number stands for a 

specific student). 

T:  What did you observe when solving part (a)? 

S1:  We found that it was not possible because when you solve the system there are 

many possibilities for two of the four variables. 

T:  And what does that mean? 

S2:  When you have parameters you can give them any value you want. 

S1:  But then it would not be necessarily consistent, you give different values to the 

parameters and you find different matrices, but you need the same for all the 

given data, 

T:  Is the matrix corresponding to the inverse transformation unique? 

S2:  Yes, now I see, then it is not possible. 

T:  Does someone have a different response or a comment to make? (No response). 

Then what about part b? 

S3:  You need more information, another source vector and its mixing result. It has 

to be different. 

T:  What would you expect to happen if I give you a source vector that is a multiple 

of the one you had? 

S3:  It will not work. Again we would have many solutions. Ah, I see what you meant. 

The new information vectors have to be linearly independent so we can find 

matrix B and the resulting vectors from the transformation also have to be 

independent so the system that we obtain will have a unique solution. 

T:  Now how do you interpret matrix B? 

S2:  You know the matrix transformation corresponding to matrix B applied to an s 

gives the vector x; then if you multiply B by s you have to find the given x. 

T:  That is fine, but if you compare what you are doing in part (a) with what you are 

doing in part (b), what is the difference? 
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S2:  I see that, well matrix B is the matrix associated to the inverse of the 

transformation. 

T:  What can we say now after doing this activity? 

S3:  Comparing all, we know now that for a matrix transformation its inverse 

transformation is unique and so is the matrix associated to it. And then, 

comparing all the systems we did, we found that for the inverse matrix to exist 

the matrix associated to the original transformation needs to be squared and its 

rows and columns must be linearly independent. 

6. Discussion and conclusions 

The analysis of the examples presented shows the close connection between a GD 

and the design of problem situations. Each task focuses on details that many times are 

not considered when the instructor or the designer assumes a broader view of the topic 

to teach. By having the opportunity to center on each construction when working with 

sequences consisting in this type of tasks, students are given many opportunities to 

reflect on very fine- grained details of mathematical concepts from different points of 

view. Students are also given opportunities to discuss the role played by each task in 

itself and in terms of a sequence, as well as the opportunity to develop their strategies at 

different moments of the ACE cycle. They are also encouraged to relate all those 

constructions and build a deeper understanding of the concepts involved.  

There might be a doubt as to whether the use of ACE cycle and the designed 

activities can constrain the instructors’ freedom to use other different tasks that had not 

been previously developed. However, this is not the case. In each cycle the instructor 

can ask students questions considered to be important, with the aim of helping students 

constructing knowledge while they work in teams and can use the ACE cycle phases as 

considered necessary depending on the appreciation of the needs of the group in terms 

of where the students stand as for the construction of their knowledge about the topics 

in question. He or she can also introduce new questions that motivate revisiting of the 

previously worked tasks, with the intention to help students to reconsider or refine their 

approaches, or to keep them reflecting on what they have done, always under the 

guidance of the proposed sequence. These opportunities enrich the instructors’ work. 

Task design in APOS Theory is also useful in detecting and explaining students’ 

ways of thinking, their difficulties and the relations between different constructions they 

can or cannot make. There are many examples that show its potential and success in 

explaining learning phenomena (i.e. Weller et al., 2003; Roa-Fuentes & Oktaҫ, 2012, 

Martínez-Planell & Trigueros, 2019). There is also a wide spectrum of tasks designed 

and tested to teach calculus, linear and abstract algebra, and other areas of mathematics. 
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Extended abstract 

This paper discusses the role of task design in APOS (Action–Process–Object –Schema) 

theory in relation to student learning of mathematical concepts. The theoretical 

framework is explained briefly, followed by an explanation of the role played by the 

genetic decomposition in the theory and in task design. An example of a genetic 

decomposition for the concepts of inverse matrix transformation and inverse matrix is 

given. Tasks designed using this research tool as a guide are exemplified, together with 

a description of their relationship to the genetic decomposition. This provides insights 

about each task and the mental constructions that it has as its aim. A detailed preliminary 

analysis from the viewpoint of APOS Theory points out to the connection between the 

mental structures and mechanisms predicted by the genetic decomposition, and the 

design of the components of the task sequence. Specific features that each task holds in 

order to fulfill its purpose are mentioned, as well as the role that it plays within the 

sequence. An overarching modeling context offers opportunities in terms of linking 

mathematical ideas to an engineering problem adapted to an introductory linear algebra 

course, of motivation for solving it, raising the interest of students for the mathematical 

concepts in question as well as preparing them for making connections with more 

advanced notions. Designing task sequences within the methodological cycle of APOS 

Theory ensures that the tasks are original and powerful in helping students learn with 

meaning the intended mathematics. The role that tasks play in the class is also discussed, 

as the combination of collaborative work of students in sequences of tasks and in group 

discussions form the foundation of APOS Theory’s potential to promote essential 

constructions needed for a deep learning of mathematical notions. Considerations about 

strategies to be employed in the classroom by instructors are included. 

 


