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Experiencias de resolucion de problemas en interaiomes del grupo clase
Abstract

La resolucion de problemas a menudo se considegigparte esencial del aprendizaje matematico.
En este articulo examinamos las interacciones da ta clase en torno a los problemas y su resohycio
tal como ocurren naturalmente en el aula de mataast Por tanto, examinamos experiencias
ordinarias de los estudiantes en la resolucion debfemas en sus sesiones habituales de clase.riduest
analisis muestra como los estudiantes participanmagama muy limitada de acciones de resolucion de
problemas y que las acciones en las que si paaticipon controladas por el maestro. Esto plantea
implicaciones acerca de como los estudiantes perncébinterpretan resolver problemas en mateméticas.
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Experiences of problem solving in whole class intactions
Abstract

Problem solving is often considered to be an esdgmart of learning mathematics. In this paper
we examine the whole class interactions around lerab and problem solving as they naturally occur in
mathematics classrooms. Thus, we are examiningestsidordinary experiences of problem solving in
their everyday mathematics lessons. Our analysig/stihow students’ participate in a very narrow rang
of problem solving actions and that the actiond thay do participate in are controlled by the teac
This raises implications for what students perceind interpret problem solving to be in mathematics

Keywords: Problem solving; conversation analysis; classraugeraction.

1. Introduction

Thompson (1985) argues that “to learn mathemascs$oilearn mathematical
problem solving” (p. 190). The relevance of problesiving in learning mathematics is
reflected in the curricula around the world. In tH& the Cockcroft Report (1982,
paragraph 249) stated that “mathematics teachingllatievels should include
opportunities for problem solving” and one of thms of the National Curriculum for
11-14 year olds states that all students “can spteblems” (English Department for
Education, 2013, p. 2). The standards for mathealgtractice in the Common Core in
the US states that students need to make senseldéms and persevere in solving
them (http://www.corestandards.org/Math/Practick). both the UK and the US
practices like reasoning and arguing are menticegdrately. In Singapore, problem
solving is at the centre of the framework of schimalthematics curriculum (Kaur &
Toh, 2011) and treats reasoning as a key compafigmbblem solving.

In this paper we focus on students’ experiencesobfing problems as they are
enacted within the classroom. However, we diffemfrexisting work on problem
solving in the classroom by considering problem&eothose tasks that the teachers
describe as problems, and the activity of solvirgpfems as those activities or actions
that teachers and students perform during wholesaliésscussions around the teacher’s
problem, i.e. those actions and practices involaetie activity of problem solving that
are public. Students are offered a variety of tasktheir mathematics lessons, only
some of which can be described as problems, andsonhe of which are followed by
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the activities associated with problem solving. Bgnsidering only those tasks
described by the teachers as problems, we diféen the usual researcher’s definition
of a problem as a task where there is no readigflave procedure for finding the
solution (Hodgen, Foster, & Kuchemann, 2017, p. @d)a task where someone
“experiences a state of problematicity” (Mason, 0. 263). These definitions are
subjective in that for some students a task mag peoblem, whilst for others in the
same class it may not. This usual definition i @lse that researchers use, and does not
necessarily match what teachers or students cartside problems. We are interested
in students’ experiences of problems and of proldeiaing in classrooms and we do
this by considering those tasks that teachers @ipldescribe and pose as problems
and analysing the work that is done in the intéoadhat follows.

2. Literature review

2.1. The nature of problem solving

The extensive research on problem solving in ma#ties argues that problem
solving involves: understanding and making sensehef problem; connecting the
problem with known information, ideas, proceduresl astrategies; using multiple
representations; recognising similarities in theuctre of different problems;
metacognitively analysing a problem, the problerviag approach and the solution
(Guberman & Leikin, 2013; Mason, Burton, & Stac29,10; Schoenfeld, 1985). The
guestions then arise as to whether students theessate performing or experiencing
these activities, and as to whether the studeets\aare that they are engaged in these
activities, or are supported to become aware. Relsdlaat focuses on students working
independently from the teacher, but possibly caltabng with other students, have
detailed the strategies and approaches studen(€har & Clarke, 2017). There is now
considerable literature on mathematical problemisglinspired by the work of Polya
(1945), Mason (2010) or Schoenfeld (1985) (see, Eedmer, Pehkonen, & Kilpatrick,
2016). There has also been considerable researtheodesign of tasks suitable for
engaging students in problem solving (Stein, Gro&dfenningsen, 1996). Yet there is
little research examining problem solving as itunally occurs in classrooms. In this
paper we compare and contrast two whole-classaictiens around solving a problem
in secondary mathematics classrooms with 13 yehstoldents in England.

The stance we take is that problem solving is awsttacted by teachers and
students in mathematics classrooms but it is @hehier that societally validates (Kim &
Roth, 2018) what is said and done. That is, whatehcher accepts and what the teacher
emphasises (see, e.g., Goizueta & Planas, 2013yhet students learn to be
mathematically acceptable. As Yackel and Cobb (199861) put it, the “teacher can
serve as a representative of the mathematical cantynin classrooms” and their
validation and acceptance of student explanatiangusifications influences what
counts as a mathematical explanation or justificathat it means for students to solve
problems can thus vary between classrooms, an@quoastly what students learn to be
mathematical problem solving, through successfdiig@pation in interactions around
the solving of problems, varies between classrooms.

Tasks and problems can offer students the oppdigario engage in a range of
problem solving activities, but they do not guaesrthat students will recognise or seize
these opportunities. It is not enough to providedents with cognitively demanding
tasks, for the teacher also needs to support amdiae students’ problem solving
through how they interact with them. Students alsed to be aware that they solving
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problems or problem solving, through teachers lafgetasks as problems and activities
as problem solving. Using Marton and Tsui’s (204j)inctions, it is the enacted object
of learning that we consider here, not the actwaintended object of learning, by

examining what teachers and students actually denwhteracting around a shared
problem. It is with this in mind that we now tumm the literature on teacher practices
that support students’ mathematical activity.

2.2. Research on mathematics classroom interaction

The research that considers mathematics classroteraction is extensive and
examines a range of issues within mathematics #&duacadn this section we consider
research that focuses on teachers’ or studentstipea that support the activities of
doing mathematics. These include argumentationlaeXpg, and reasoning, for
example. As teachers can play a pivotal role inhestrating these mathematical
activities and practices, we also consider sontéeinteractional moves that teachers
can make to support these practices detailed iditdrature that we draw on in the
analysis below.

Mathematical practices such as explaining, reagprand arguing are developed
through classroom interactions. As mentioned abeotgt counts as a mathematical
explanation or justification (Yackel & Cobb, 1996)given by what teachers, and to
some extent students, treat and accept as matlametiplanations or justifications.
However, both Erath (2017) and Ingram et al. (2Gk®)w that teachers accept a wide
range of contributions as explanations in matharsatassroom interactions raising the
issue of what students are learning about what tecas a mathematical explanation
rather than an explanation (Erath, Prediger, Qo#fsi& Heller, 2018). This distinction
is made by Yackel and Cobb (1996) when they contsaxial norms and
sociomathematical norms.

Students’ argumentation has been widely studiedidimg on how students justify
the claims they make and the evidence that they d@on. Collective argumentation
specifically focuses on argumentation in interactiand has been considered by
Krummheuer (2007) and Conner et al. (2014) amaotpstrs. Collective argumentation
is where teachers and students co-construct matloanarguments which include
mathematical claims and evidence to support thésens. From this interactional
perspective, what counts as data or a warraningyjonegotiated in interaction. Yackel
(2002) focuses on what teachers can do to supplbettve argumentation, such as not
evaluating students’ reasons but inviting othersdxmment on them, or offer different
reasons and shifting students’ attention away ftbenclaims being made towards the
supporting evidence for the claims.

Research focusing on the actions of teachers ipstipg mathematical discussions
and interactions identifies a variety of actiondifferent levels of generality. These can
include guiding principles or ground rules, suclSgaples’ (2007, p. 172) guiding the
mathematics, establishing and monitoring a commoargl, and supporting students in
making contributions, to very specific patterns ioferaction such as focusing or
funnelling (Wood, 1988) or even specific utteransesh as revoicing detailed below.
For example, Stein, Engle, Smith and Hughes (2008ne five practices for teachers
to use in orchestrating whole-class discussionsr Bb these describe actions during
lessons: monitoring students’ responses to thestaskecting particular students to
present; purposefully sequencing the student ptasens; and helping to make
mathematic connections between the responses. Hutiems relate to a particular
teaching structure where students explore theitagpendently from the teacher before
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a whole-class discuss-and-summarize phase. Yet oortasks can use a variety of
structures, including oscillating between indepemdeork and whole-class work.

Yackel (2002) and Conner et al. (2014) both fodusirtdescriptions of teachers’

practices on those that support argumentationudmaty direct contributions where the
teacher provides part of the argument being cotoected such as a warrant or backing,
and by asking types of questions or providing prnpncluding requests for

elaborations or evaluations.

However, opportunities for participation in expiaig (Erath et al., 2018) and
argumentation (Cramer & Knipping, 2018) are notrgyelistributed across students,
classrooms or schools. Many studies present exangplech interactions that involve
problem solving or collective argumentation (eWhitenack & Knipping, 2002) but
these examples serve to illustrate particular st or even to advocate a different
way of teaching, and do not necessarily reveattieeyday lived experiences of students
in the mathematics class. An ethnomethodologicataach, such as the one taken here,
focuses on these ordinary, everyday experiences.tltese experiences that establish
the norms around what it means to solve problenspétific mathematics lessons.

Many of the aspects of practice discussed aboveised by the teachers in the
extracts we share below, yet not necessarily in ey what supports collective
argumentation, or the articulation of studentssoeang or explanations. It is often the
sequence of interaction within which these prastimecur that establishes the norm or
that influences students’ behaviour, rather thanrnkividual practices themselves. For
example, Wood (1988) makes the distinction betwaefunnelling pattern and a
focusing pattern of questioning, with a fundamedtsatinction being between whether
the goal of the interaction is the teacher’s apéited solution or is a shared goal with
the students. A funnelling pattern describes aeseof teacher questions that directs
students through a specific journey to a desirddtisn. This pattern can give the
impression of learning even though it is the tea¢hat has done the cognitive work
through the design of their questions. Focusingrattions in contrast are patterns of
interaction where the teacher’s questions resppadifscally to the students’ responses
and the direction is toward a shared goal.

Revoicing (O’Connor & Michaels, 1993) is anotherdely discussed teacher
practice that involves the repeating or rephrasing students’ utterance in a way that
allows the student to affirm or contest what iseegpd or rephrased. It is this evaluation
of the repeating by the student that marks thiseras/different from simple echoing or
repeating which is very common in classroom intiosacand can perform a variety of
discursive actions (Lee, 2007). Revoicing that Iage the teacher changing what the
student said in some way that emphasises or drdergtian to a particular idea, work
or aspect of what the student said is called actveicing (Eckert & Nilsson, 2017).
Herbel-Eisenmann, Drake and Cirillo (2009) identdyr features of a revoicing move.
Firstly, they often begin with a discourse markechs as ‘so’, also identified by
O’Connor and Michaels, which indicates that the tsrbuilding on what has just been
said. They also include personal pronouns suckhas to create a relationship between
what the revoicing and the student who gave thgiral utterance. Next there is a
laminating verb like ‘think’ or ‘said’ which furtheereinforces the connection to the
student. The final feature is the one emphasise®1gonnor and Michaels which
allows the student the opportunity to affirm or st what has been revoiced.

In the analysis of the two problem solving actastwe describe below we focus on
the whole class interactions, in what could beechibllective problem solving/NVhilst
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students may have worked on the problems indepdgdéns how they are discussed
publicly and how the process of solving the probigiointly negotiated by the teachers
and their students that is the focus of the anslysiis this public interaction that
reinforces what the teacher treats as importadtydrat is emphasised and made public,
and what is ignored. We acknowledge that the digts/and practices that students may
participate in when working individually or withehr peers is likely to be different from
those they participate in when interacting withtéecher (Goizueta, 2019), by focusing
on whole class interactions we can study what dppdres all students have to see or
participate in particular practices involved in hehatical problem solving.

3. Theoretical approach and methods

The analysis takes a conversation analysis appr@@icimell & Stivers, 2012)
grounded in ethnomethodological principles (Ingr&@18). This means that in the
analysis it is the perspective of the participahtst matters, i.e., what teachers and
students treat as problems and problem solvings &pproach emphasises the social
and interactional nature of teaching and learnighematics and focuses on naturally
occurring interactions. The lessons consideredWwere not specifically designed to be
about problem solving, and therefore any probleiwisg activities arose naturally as
part of the teachers’ usual practice. It is an atie approach to research focusing on
sequences of utterances in naturally occurringacten. It is also a micro approach
where utterances are considered to be social actamal consequently, we take learning
mathematics to be about doing mathematics: suelx@aining, justifying or defining.
For this reason, it is essential to analyse stdédrning of mathematics in classroom
interactions at the micro level.

3.1. Data and methods

The data considered comes from a corpus of 52resaith 17 teachers from 8
schools. These schools were diverse in terms efdenf social deprivation, proportion
of students with identified learning difficultiea@ proportion of students with English
as an Additional Language.

The whole-class interactions from these videos viexescribed using standard
Jefferson transcription (Sidnell, 2010). Teacheesseh been given pseudonyms
beginning with T and students have been given psguds beginning with S where an
individual student can be identified. Where ih@ clear which student is speaking we
have used S to denote a student speaker, or Sswodedmultiple student speakers. A
collection of cases was then built of tasks whiestéacher, or a student, used the word
‘problem’ at some point during the introduction tbe task. This building of cases
omitted those situations where the teachers talkedt problems in terms of a difficulty
rather than a task, though analysis of these diffes could in the future offer further
insight into the classroom practices associatedh witoblem solving. Two of the
teachers, not considered in this paper, videoeddwtsecutive lessons based on an
investigative task, which could be classified asablem using the traditional definition.
However, in neither case did the teachers use tirdsaproblem or problem solving
when they introduced the tasks. Both these teadtessribed these lessons as ‘doing
something a bit different’.

This paper presents two episodes that illustratedi@ssroom interactions influence
the problem solving experiences of students in grattics. These two cases are typical
of the handling of problems in interactions withie data but also offer an illustration
of some of the differences in the ways that teachad students engage in the problem
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solving process. By focusing on teachers’ instamal practices during whole-class
discussions on the solving of a problem, we offeifierent perspective on the nature
of problem solving in the ordinary classroom, conmegato studies using researchers’
definitions of problems and problem solving.

4. Problem solving experiences in whole class inttions

4.1 Tyler’s lesson

Tyler introduces the activity as a game but dodsuse the word problem at this
stage to describe the activity or questions. Theeyavolves ten paper cups, one of
which has a red cross marked inside it. The cup$raed up and the students are invited
to choose a cup, one at a time and without replaoenBetween turns 11 and 60 the
class are playing the game and the focus is oinignithe cup with the red cross. In turn
60 in Extract 1, Tyler poses a question about wdretthe students are better off being
the first ones to pick a cup, or whether the chasfdending the cross increases if you
wait. The students ‘guess’ positions to play befiwe game is played again. It is not
until turn 157 that the worgdroblemis used and the question about when to choose a
cup to have the best chance of finding the crossrhes about likelihood and
probabilities.

Extract 1: Tyler introduces the problem

11 Tyler: ... um. today though | wanted to look #dibit at probability. okay.
we've done some of this before and | wanted to posion a little (.)
bit (0.3) further with some of the probability wattkat we've done. so.
first thing is it is my birthday today so | thoughie'd play a game to
start off with
((transcript omitted))

60 Tyler: ... okay my next question would be (.) okgyis it better, (1.8) is it
better to go first, (1.5) or is it better to hangand wait. what's more
likely. when are you going to be more likely to wWihif you (.) wait
() if you go first? if you go last? if you go somieere in the middle.
where's the best position to actually have (.)@sgwo you (.) think.
Joe
((transcript omitted))

193  Tyler: ... so thinking about this (1.1) as a peaf think about this when's it
most likely to choose (0.4) which one? okay? whhtsprobability of
the first person winning. what's the probabilityyolu getting it right
straight away.

The game becomes a problem in the same turn agutients shift from thinking
about winning the game to thinking about likelihaodl probabilities.

Extract 2: Tyler's class work on the problem to@eth

193  Tyler: ... so thinking about this (1.1) as a peaf think about this when's it
most likely to choose (0.4) which one? okay? whhtsprobability of
the first person winning. what's the probabilityyoli getting it right
straight away.

194  Sam: er one in ten

195  Tyler: one in ten. good. what is the probapibit the second person winning.
okay, (0.5) think about it. what do we need thstfperson to do.

196  Ss: get it wrong

197  Tyler: get it wrong. so what's the probabitifythe first person getting it
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wrong.

198 S: one

199 Sam: nine tenths

200  Tyler: nine tenths. what's the-, an-, and wetwlze second person to win. so
the probability of the second person winning is tvha

201 S ninefty nilne [((inaudible))]

202 S [eight]

203 S [sir] wha- what would you ddhiat [((inaudible))]

204 S what number?

205  Tyler: it doesn't matter because we're notipipgt the moment, just
((inaudible))

206 S oh

207  Tyler: what's the (0.3) probability of the sedgerson winning?

208 S one in nine

209  Tyler: one in ni:ne. what do | get if | mulypthose together.

210 S er ninefty nine ]

211  Sam: [nine over ninety]

212 Tyler: cancel it down

213 (1.4)

214  Sam: three in thirty

215 S three in thirty

216  Tyler: cancel it down again!

217 S oneinten

218 S one in ten

219  Tyler: one in ten. exactly (.) the same (.)oatulity. second person has

exa:ctly the same chance (0.6) as the first petbermprobability of the
second person getting it is exactly the same. tw the third, (0.8)
we want the first person to lose. what's the priiyabf the second
person losing.

((transcript omitted))

243  Tyler: so | can just cancel the down straiglaya so, despite what you thi:nk
(0.4) it doesn't matter when you go. you still htve same (.)
probability if y- if you chose before now which fiien to go in, you
would have the same probability of winning (0.6)matter where you

go=

In turns 193-208, Tyler is breaking down the probl@to separate questions that
ask the students to calculate the probabilitiesirajle events and to recognise what the
events are, such as the need for the first persoget it wrong in turn 196. The
sequencing of the questions asks students to aédcalsingle probability at a time, with
student turns that do not give the required prdhigsi being ignored, as in turns 198,
201 and 202. With each appropriate answer Tylezatpthe answer before moving on
to the next question, effectively evaluating thaeswers as correct by doing so (Lee,
2007) . In turn 209, the students are asked to awarihe probabilities, but Tyler tells
them how to do this so that the students are @adyired to perform the multiplication
of the two fractions, nine tenths and one in ninger then explicitly asks them to cancel
it down in turn 212 and again in 216, and the stteleespond with simpler fractions
each turn. They reach the final answer of onenniteturns 217 and 218 which Tyler
repeats. It is Tyler who marks this as the endhefdalculations and summarising what
one in ten is the answer to. It is Tyler who makesconnection between the probability
of the first person winning and the second persomwvg as being exactly the same
chance. The interaction then continues with theutation of the probability of the third
person winning in much the same way as the interaetround the probability of the
second person winning, though with some difficsltigth the simplification at the end.
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The work on the problem ends with turn 243. Herkefsummarises the conclusion that
each of the probabilities are the same and thexafatoes not matter which position
you are in for choosing a cup. Whilst Tyler drawg®n his students’ turns in his own
turns, it is Tyler himself who has connected the¢hprobabilities and identified that
they are the same, and it is Tyler who has usedtthconclude that it does not matter
which position you go in.

4.2 Tim's lesson

In the second example, Tim introduces the ‘problasbeing about averages, which
includes the mean, mode, and median. Tim cleaakgstwhat is needed to be known in
order to solve this problem, which is the questbnvhat mark will Michelle need to
get in her fifth exam in order to have an averageknof 70%.

Extract 3: Tim introduces the problem

2 Tim: | just want to look at a little problem, (% Bwant to look at a little
problem involving averages, just remember we axe gxperts at the
mean, mode, (.) median (0.4) and if necessaryathger. so I'll show
you this in a second, just want you to think alibig, perhaps talk to
the person next to you. I'm not going to answergusstions until |
think everyone's had a go at at it and then wedlll um have a look
on the board. ((transcript omitted)) (1.7) righv&a look at this then.
(3.1) if you want to do any working out you canttlat in the back of
your exercise books. (4.8) Michelle's parents atydriy her a new
surf board, she has to get an average test scgevehty percent or
over. she's done (1.1) four exams already, thaied whe got. My
guestion is what will she need to get (0.7) in readt least what will
she need to get, (1.0) if she's going to get thesagge score of seventy
percent. you might need a calculator for this I'tkmow.

Tim gives students time to work on the problem tkelves, talking to each other
whenever they wish. He makes reference to the thagkhave been doing on the mean,
mode and median which are the averages they welll ne solve the problem, and he
makes this connection explicit. The working outt ey need to do can be done in the
back of their books and they may need a calcutatdo some of the calculations. The
problem is described as ‘little’ twice and will rgce students to ‘think’.

Tim begins the whole class interaction around ttublem by inviting students to
explain “what they were thinking about” and therréport “possible ways of doing it”.
Sam is the first student to volunteer to report wha had been working on and he
describes the process of what he did. This prases<alculation that involves adding
all the numbers on the whiteboard and then dividy§. Sam does not offer any reasons
for why he did this and Tim does not prompt him theese reasons. Sam has followed
an algorithm similar to finding the mean althougistis not explicitly mentioned by
Sam or Tim in this interaction. However, there islgfem with Sam’s answer which
Tim hints at in turn 16 where he revoices Sam’dangtion adding ughefour numbers,
to adding up four numbers, and then divided by.fl@m does not change his answer.
Tim then repeats the process Sam is reportinghisititne inserting the numbers Sam
would have added in the first stage, and Sam adfitmat this is what he did.

Extract 4: Tim's class begins to work togetherrmgroblem

8 Tim: okay then folks. (0.8) can we have quietpk (0.7) either (.) you've
got this figured out, in which case (.) listen ontribute, or you
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haven't got this figured out, (0.3) in which case yeed to also listen
and to try and (.) work out th-, the i- the waytloihking to solve these
types of problems. u:m (0.8) right | got my answvea flash, I've got
to admit it (.) okay (.) but u:m (0.3) somebodyedisen, can we have
someone explain to the class what they were thinabout, (0.4)
possible ways of doing it please. (0.7) Sam.

9 Sam: | added them all up

10 Tim: you added them all up

11 Sam: yeah

12 Tim: so you did (0.9) what that (0.6) plus tf@ab) plus that, did you add
that one on as well.

12 Sam: er: no

13 Tim: okay

14 Sam: and then (0.6) | (1.5) divided that by {i9€7) to get the how much
she needed (0.7) in the last (0.3) um: (.) test.

15 (1.2)

16 Tim: so you added up the four numbers, (0.8)aaded up four numbers
(0.3) and then you divided by five? (1.8) is that i

17 Sam: yeah

18 Tim: so seventy two plus forty three, plus eyghte plus seventy one. wha-
Sam what did that add up to.

19 Sam: two hundred and seventy one

20 Tim: two hundred and seventy one is it.

21 Sam: yeah

22 Tim: so that eg- that equals two hundred andr#gwvone and then you did

two hundred and seventy one divided by five. °Oaydk

This whole sequence has been about the procedaorei§ed to solve the problem
(as he states in turn 14). No other aspects optblelem solving process are explicitly
discussed or drawn upon, including that the catmrds about the mean. Tim does not
evaluate or make the part of Sam’s answer he Ipaslbdem with explicit until turn 28
in Extract 5. Tim does offer an explanation for wigysees Sam’s process as problematic
at the end of this turn, but at this stage he do¢®ffer Sam the opportunity to change
or correct what he did. Instead he invites Stewvetake the next turn — to offer another
strategy. Steven reframes the question to be dimlihg the total that needs to be
divided by five in order to achieve a mean of 7idn Tevoices Steven'’s process in turns
33, 35 and 37 with Steven affirming Tim’s inter@téan in turns 34 and 38. This extract
also includes the first mention of mean in turn 33.

Extract 5: Steven offers a new interpretation efpnoblem

28 Tim: okay. Sam added them up. okay (1.2) Sarectitem up shhshh shh
shh. Sam added them up, they added up to two hdiaahe: seventy
one, that is a useful bit of information (1.0) kst thing about
dividing by five. that seemed to me, | don't knawittle bit
nonsensical cause you've only got four numbersdidigy by five (0.6)
I'm not sure. (0.4) Steven.

29 Steven: um you need, if yo-, you can find tke I{0.3) all the numbers, the
end mark, the end (.) percentage means that thigeethree hundred
and fifty percent altogether so if you divide byefiit comes up to
seventy.

30 Tim: right hold on a sec. (0.6) three hundredl fifity percent, (0.2) er |
suppose, can you add percentage together and ¢éhémree hundred
and fifty per
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[cent | suppose so Jokay

31 Steven: [no what we ]
32 (1.0)
33 Tim: S0 you're saying that if you've got fiventhers (0.4) and you want to

get a mean (0.3) of seventy
34 Steven: yes=

35 Tim: =those five humbers must add up to (0.Ay]hat

36 Steven: [thr-] three hundred and fifty

37 Tim: three hundred and fifty.

38 Steven: ye:[h

39 Tim: [okay] that is, does everyone understhiadidea.

40 Students:  yeah

41 Tim: so then if this, (1.2) hold on, you've gome mystery number (0.4)

and when you divide by five you need to get seveetgent. Steven’s
saying that mystery number on the top (0.3) hasagbe (0.4) three
hundred and fifty.

[yeah () okayy |

42 Steven: [because seventy times five equals]
43 (0.6)
44 Tim: so then, (1.1) we know this. you know ttiagse (.) four add up to two

hundred and seventy one, (0.4) so then | suppoaéyel could do (.)
is say that two hundred and seventy one plus thibsmaark, ((writing
on the board at same time)) well has got to eduekthundred and
fifty doesn't it. (1.2) does that make sense? Hygean.]

45 Students: [yeah]

In Extract 5, the focus is on the reinterpretatainthe problem alongside the
calculations needed. Steven begins by stating tvhatants to find out, ‘the end mark’
which he then gives without explicitly explainingva he reached a total of 350%. Tim
gives an explanation as he revoices Steven’s reggom turn 33, however, this
explanation is at the general level and it is nqalieit about which five numbers must
add up to 350 and this calculation is not posdieleause of the missing number. Steven
gives the actual calculation needed to get 350rim42 but overlapping with the teacher.
Tim does not use this explanation in his summanyin 44 which rephrases Steven’s
reframing of the question from turn 29, drawing agbe value of 271 Sam found in
Extract 4. Tim emphasises the role of using whay tknow at this point, which is the
value of 271 that Sam found by adding up the foark® written on the whiteboard.

Extract 6 then continues with Sean introducingf@iint answer, which he justifies
by returning to the original question and offerenglifferent interpretation. Tim delays
dealing with this interpretation until turn 50, aindtead asks Steven what he thinks the
missing mark could be. Steven gives this answeuiin 48 and Tim repeats it, but
rephrasing it as a question. This uncertainty im'$i repeat de-emphasises the
importance of the actual answer. Tim then continuigls an explanation of why 79 is
the answer. He then continues his turn by talkmganeral about solving ‘mean’ type
problems, and implying a relationship between rplying and dividing but he is not
specific about what he means by this type of probde the relevance or when or why
you would use multiplication or division (particdlasince this problem also involved
adding). He then summarises ‘what we really didfobe® returning to Sean’s new
interpretation of the question. In turn 50 Seareat® what he said in turn 46. Tim
reinforces that this is a new interpretation ofdhestion in turn 51, and builds on Sean’s
idea that it could be a different average by sjpeadlfy naming the three averages that
the class has been working on.
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Extract 6: Introducing different averages

46

a7

48
49

50

51

52
53

54

55

56

57

58
59

Sean:

Tim:

Steven:

Tim:

Sean:

Tim:

Sean:
Tim:

Sophie:

Tim:

Sophie:

Tim:

Sophie:

Tim:

it could also be seventy one just bedhesguestion doesn't specify

which aver[age
[hold]ome're going back to that, we will go

back to that. let's do this one. so, what is tlatiper.

seventy nine percent
seventy nine is it? so by by that sortagfit, that there would have to
be seventy nine percent. Seventy nine, at leasause seventy nine is
the number when that you add up the five numbedande by five,
that's the one that gives you seventy percent. d&sadveryone, does,
is everyone happy with that. so you know when youhg¢ mean you
do it by dividing, quite often when you're solvitigese (.) mean type
problems you end up timesing. wha- what we redtiywehs say,
mystery number divided by five is seventy, so whdive times
seventy. five times seventy is three hundred ahddo that's what the
total must add up to. yeah? | think we'll wait e fessons. | think
we'll try another one like this and make sure riexé everyone can
get it. (1.1) right. (0.9) oh what were you goiongsay

it could also be seventy one becausedndspecify which average
itis.
right I've got a feeling that Michelle'srpats au- are not perhaps quite
au fait with gcse mathematics. they've just saidalverage test score,
and its they haven't actually specified whethey'teaalking about the
mean, or the mode or the median or perhaps soree tgtte of
average. okay so we didn't actually say the mearege. it was just
an average. so- oh what are you saying it could be

for the mode it could be seventy one
she could just get seventy one. (1.1) & gbt seventy one percent, she
could say to her parents well my average test nthekmode, is
seventy one? (1.6) °where's my surf board.® and @lsa could it
have been actually (0.8) Sophie.

it could have been seventy, becausg@h&ner: then you (cra-
inaudible) for the median, cause then you getfieighty five and
forty three,
well that's sort of whatl was thinking
yleah so ]

[you get ri]d of seventy two and seya@mte and then [seventy's in
the middle]

[well if you put the]se a:ll, ifop put these numbers in order
smallest to biggest, seventy three, forty threeesty one, seventy
two, eighty five.tl sort of thought this! what would happen if shygs
(0.5) one percent on her (0.6) on her maths matksrtast. what
would the averag- the m- median be?

it would be seventy one
it would be the middle one which is seveniye so in a way | don't
think it matters (0.6) what she gets in her madisg tbecause the
me:dian will always be (0.4) at least seventy dinghe got a hundred
percent over here, the median would move wouldrithié median
would go up to seventy two. same sort of thingtisca way she could
say, if she really understood the me:dian, youd¢anfjue doesn't
matter what she got really,

The interaction continues with Sean offering theden@nd Sophie offering the
median. No detail is given as to how Sean camestartswer of seventy-one, but Sophie
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describes the process she used to find the mefiahie’s answer of seventy is only
one possible answer for the missing mark that woesdlt in a median of seventy-one
butitis Tim in turn 59 who indicates that anyetimark would give a median of at least
71. The discussion around the problem ends with’'sTimrn, which interprets the
median within the context of the problem.

5. Discussion

The analysis above illustrates two ways of worlonga problem as a class. Tyler’s
problem begins his lesson and he uses it to int@tle new topic of probability. Tyler
includes at least one ‘problem’ in all of his lass@nd in each case there is a context
that the students are able to explore for themsekither as individuals, or as a whole
class, before he brings the class together todotre the mathematics. Four of these
problems are used to introduce a new topic at dggnining of the lesson. Whilst the
problem discussed above is unusual in that Tylesamt allow the students to work on
the problem independently before working throughdgblution as a whole class, it still
illustrates the nature of the actions of studentstaachers in the whole class discussions
on solving problems. Tim only includes one tasklescribes as a problem in his lessons
which is the one discussed above. This task come @&nd of a topic on calculating
averages. Thus the two problems are serving diftgrarposes, the first introduces the
new topic whilst the second is used to apply somgttihe students have learnt.

The discussion around problem solving in Tyler'ssten involved performing
calculations, making connections, and interpresofutions. Yet what the students
actually do when working on the problem is perfaimgle step calculations that are
identified by the teacher, and on only one occaslentify the feature of the problem
that affects what they need to find out. It is teacher who identifies the appropriate
calculations and sequencing of these calculatiting the teacher who makes the
connections between the calculations, and betweercdlculations and the problem
context. It is the teacher who makes the connetteiween the different solutions and
considers the implications for the problem. Itlsoahe teacher who identifies when the
problem is solved and summarises and draws coodsisit this point.

The discussion around problem solving in Tim’s ¢esalso involves performing
calculations, making connections, and interpresiolgtions. In this context the students
do more than just perform or report calculationd procedures. It is the students who
initially interpret the question, in different wayand Tim sometimes revoices and
sometimes repeats these interpretations. It issthdents who have decided which
calculations to perform. The students also interpheir solutions in terms of the
mathematical concepts they are working with, big ifim who makes the connections
to the original problem context.

Both teachers state in the introduction of the fwbwhat mathematics will be
relevant — probabilities and likelihood for Tylarxchmean, mode, and median for Tim.
Both teachers use a sequence of questions and fgrtmpare similar to Wood'’s (1988)
funnelling pattern in that the teachers are dingcthe topic of the interaction towards
their goal which they treat as a solution to thabpem.

Returning to the actions that problem solving éat@buberman & Leikin, 2013;
Mason et al., 2010; Schoenfeld, 1992) in both exemstudents are given the
opportunity to understand and make sense of thelgro In Tyler’s class this is by
playing the game and developing a strategy for imgpnand in Tim’s class this is by
working on the problem independently without teachgport. In both examples, the
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teachers make connections to the mathematical ithegswill need, probability in
Tyler’s case and different averages in Tim’s c&s#h teachers talk about the problem
and represent it with numbers on the whiteboarderTalso includes physical materials
and a table to remind students of the work theyodidalculating the probability of two
events. Only Tim makes a connection to similar f@ols, though this is a generic
reference to mean-type problems rather than tcsanyarities or features of problems
where what they have done on the problem may keeagt.

Whilst the students may have engaged with manlyesfe actions individually, only
the opportunity to engage with some of these proldelving processes is given. The
teachers model many of these actions, but rarekerttras modelling explicit and offer
few opportunities for the students to engage irbl@m solving actions or practices
themselves within the interaction. Whilst teachersdelling problem solving can
support students’ development of their problem isghskills, students also need to
participate in the actions of problem solving, utdihg the metacognitive skills
associated with problem solving (Coles, 2013). Tieex can never guarantee that the
intended learning will occur, but they can ensirat the opportunity for students to
learn what is intended is available (Marton & T<2004).

By considering everyday classroom interactionsaaurding problem solving, as
opposed to lessons involving problem solving oyedhd using examples that typify
solving problems in secondary mathematics classspome have demonstrated the
limited experiences of problem solving that studemive access to. Whilst students
were participating actively in the classroom intti@ns, in particular, we have pointed
out this deficit in problem solving opportunitiey lighlighting the instructional
practices that (unsuccessfully) attempted to engaggents’ thinking, many of which
are advocated in the research considered abovéeatbers’ discursive practices. It is
worth mentioning that many of these teachers mase lspecific lessons on problem
solving and chose not to share videos of theseasssith us, this in itself treats problem
solving as something separate and special. It stamceason that if problem solving is
a fundamental part of learning mathematics, thenmwald argue that the norms of
interaction in all mathematics classrooms shoulthénstudents to experience the wide
range of skills, actions and problems that mangaeshers in mathematics education
would consider essential to problem solving.

Transcript notation from Sidnell (2010)

Convention Name Use
[text] Brackets Indicates the start and end poifitsserlapping speech
(0.5) Timed silence Indicates the length, in sesppfla silence
() Micropause A hearable pause, usually less thaiseconds
Period Indicates falling pitch or intonation
?ort Question mark or Up arrow Indicates rising pitchindonation
Comma Indicates a temporary rise or fall in intamra
Hyphen Indicates an abrupt halt or interruptiomterance
° Degree symbol Indicates quiet speech
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Underline Underlined text Indicates the speaker is emphagiairstressing the speech
Colon(s) Indicates prolongation of a sound
(text) Parentheses Speech which is unclear inrdmsdript
References

Chan, M. C. E., & Clarke, D. (2017). Structuredoaffances in the use of open-ended
tasks to facilitate collaborative problem solvingDM, 49(6), 951-963.
https://doi.org/10.1007/ s11858-017-0876-2

Cockroft, W. H. (1982)Mathematics counts: Report of the Committee ofilggato
the Teaching of Mathematics in Schodlsndon. Retrieved September 2019 from
http://www.educationengland.org.uk/documents/coatttaockcroft1982.html

Coles, A. (2013). On metacognitidror the Learning of Mathematic33(1), 21-26.

Conner, A. M., Singletary, L. M., Smith, R. C., Way, P. A., & Francisco, R. T.
(2014). Teacher support for collective argumeniat® framework for examining
how teachers support students’ engagement in matieahactivitiesEducational
Studies in Mathematic86(3), 401-429. https://doi.org/10.1007/s10649-013285
8

Cramer, J. C., & Knipping, C. (2018). Participatiorargumentation. In U. Gellert, C.
Knipping, & H. Straehler-Pohl (Eds.nside the mathematics class. Sociological
perspectives on participation, inclusion, and erdement(pp. 229-244). Cham,
Switzerland: Springer. https://doi.org/10.1007/%878419-79045-9 11

Eckert, A., & Nilsson, P. (2017). Introducing a dyolic interactionist approach on
teaching mathematics: The case of revoicing asnteractional strategy in the
teaching of probabilityJournal of Mathematics Teacher Educati@d(1), 31-48.
https://doi.org/10.1007/s10857-015-9313-z

English Department for Education (2013). Mathensgii@grammes of studkey stage
3 national curriculum in England, (September), Rétrieved September 2019 from
https://www.gov.uk/government/uploads/system/upddaitachment_data/file/239
058/SECONDARY _national_curriculum_-_Mathematics.pdf

Erath, K. (2017). Implicit and explicit processdsestablishing explaining practices -
Ambivalent learning opportunities in classroom disse. In T. Dooley & G.
Gueudet (Eds.)Proceedings of the 10th Congress of Research imémaatics
Education(pp. 1260-1267). Dublin, Ireland: DCU InstituteEeducation & ERME.

Erath, K., Prediger, S., Quasthoff, U., & Heller, (2018). Discourse competence as
important part of academic language proficiencynathematics classrooms: the
case of explaining to learn and learning to expldtducational Studies in
Mathematics99(2), 161-179. https://doi.org/10.1007/s10649-01888

Felmer, P., Pehkonen, E., & Kilpatrick, J. (Ed92016). Posing and solving
mathematical problems: Advances and new perspscti@bam, Switzerland:
Springer. https://doi.org/10.1007/978-3-319-28022€3

Goizueta, M. (2019). Epistemic issues in classramthematical activity: There is more
to students’ conversations than meets the teackarFhe Journal of Mathematical
Behavior, 55 https://doi.org/10.1016/j.jmathb.2019.01.007

18 AIEM, 16, 2019



J. Ingram & P. A. Riser

Goizueta, M., & Planas, N. (2013). Temas emergetéésinélisis de interpretaciones
del profesorado sobre la argumentacion en clageatematicasEnsefianza de las
Ciencias, 311), 61-78. https://doi.org/10.5565/rev/ec/v31n5.83

Guberman, R., & Leikin, R. (2013). Interesting atifficult mathematical problems:
Changing teachers’ views by employing multiple-siolu tasks. Journal of
Mathematics Teacher Educatid®(1), 33-56. https://doi.org/10.1007/s10857-012-
9210-7

Herbel-Eisenmann, B., Drake, C., & Cirillo, M. (Z)0“Muddying the clear waters”:
Teachers’ take-up of the linguistic idea of revogi Teaching and Teacher
Education 25(2), 268-277. https://doi.org/10.1016/j.tate.20G8004

Hodgen, J., Foster, C., & Kuchemann, D. (2017).rbwimg mathematics in key stages
two and three. Retrieved September 2019 from Igoksicationendowment
foundation.org.uk/public/files/Publications/CampagMaths/KS2_KS3 Maths G
uidance_2017.pdf

Ingram, J. (2018). Moving forward with ethnomethladical approaches to analysing
mathematics classroom interactiondDM, 50(6), 1065-1075. https://doi.org/
10.1007/s11858-018-0951-3

Ingram, J., Andrews, N., & Pitt, A. (2019). Whenidnts offer explanations without
the teacher explicitly asking them teducational Studies in Mathematid91(1),
51-66. https://doi.org/10.1007/s10649-018-9873-9

Kaur, B., & Toh, T. L. (2011). Mathematical problesolving: Linking theory and
practice. In O. Zaslavsky & P. Sullivan (Ed€qnstructing knowledge for teaching
secondary mathematicpp. 177-188). Boston, MA: Springer. https://dog/o
10.1007/978-0-387-09812-8

Kim, M., & Roth, W. M. (2018). Dialogical argumetitan in elementary science
classrooms. Cultural Studies of Science Education, (43 1061-1085.
https://doi.org/ 10.1007/s11422-017-9846-9

Krummheuer, G. (2007). Argumentation and particgratin the primary mathematics
classroom. Two episodes and related theoreticaluctiaohs. Journal of
Mathematical BehavigR26(1), 60-82. https://doi.org/10.1016/j.jmathb.20@Z(D1

Lee, Y.-A. (2007). Third turn position in teachatkt Contingency and the work of
teaching. Journal of Pragmatics 396), 1204-1230. https://doi.org/
10.1016/j.pragma.2006.11.003

Marton, F., & Tsui, A. B. M. (2004)Classroom discourse and the space of learning
Mahwah, NJ: Lawrence Erlbaum Associates.

Mason, J. (2016). When is a problem...? “when’cisially the problem! In P. Felmer,
E. Pehkonen, & J. Kilpatrick (EdsRosing and solving mathematical problems:
Advances and new perspectivgsp. 263-285). Cham, Switzerland: Springer.
https://doi.org/10.1007/978-3-319-28023-3

Mason, J., Burton, L., & Stacey, K. (201Thinking mathematicall{2nd Ed.). Harlow,
England: Pearson. https://doi.org/10.12968/eye@A®12.18

O’Connor, M. C., & Michaels, S. (1993). Aligning ademic task and participation
status through revoicing: Analysis of a classroosealrse strategynthropology
and Education Quarter|y24(4), 318-335.

AIEM, 16, 2019 19



Problem solving in whole class interactions

Pdlya, G. (1945)How to solve itPrinceton, NJ: Princeton University Press.
Schoenfeld, A. H. (1985Mathematical problem solvin@rlando, FL: Academic Press.

Schoenfeld, A. H. (1992). Learning to think math&oadly: Problem solving,
metacognition and sense-making in mathematics. l. Grouws (Ed.)Handbook
for research on mathematics teaching and learnfpg. 334-370). New York:
MacMillan.

Sidnell, J. (2010)Conversation analysis: An introductio@hichester, England: Wiley-
Blackwell.

Sidnell, J., & Stivers, T. (2012)The handbook of conversation analysidxford,
England: Wiley-Blackwell.

Staples, M. (2007). Supporting whole-class collabee inquiry in a secondary
mathematics classroor@ognition and Instruction, 48-3), 161-217.

Stein, M. K., Engle, R. A., Smith, M. S., & Hughds, K. (2008). Orchestrating
productive mathematical discussions: Five practicgshelping teachers move
beyond show and tellMathematical Thinking and Learnind0(4), 313-340.
https://doi.org/10.1080/10986060802229675

Stein, M. K., Grover, B. W., & Henningsen, M. (1998uilding student capacity for
mathematical thinking and reasoning: An analysisnathematical tasks used in
reform classroomsAmerican Educational Research Journ&3(2), 455-488.
https://doi.org/10.3102/00028312033002455

Thompson, P. W. (1985). Experience, problem solvemgd learning mathematics:
Considerations in developing mathematics curridal&. A. Silver (Ed.)Teaching
and learning mathematical problem solving: Multipksearch perspectivepp.
189-243). Hillsdale, NJ: Erlbaum.

Whitenack, J. W., & Knipping, N. (2002). Argumendet, instructional design theory
and students’ mathematical learning: A case fordioating interpretive lenses.
Journal of Mathematical Behavip21(4), 441-457. https://doi.org/10.1016/S0732-
3123(02)00144-X

Wood, T. (1988). Patterns of interaction and thitucel of mathematics classrooms. In
S. Lerman (Ed.)Cultural perspectives on the mathematics classrgpm 149-
168). Dordrecht, Netherlands: Kluwer Academic Pslirs.

Yackel, E. (2002). What we can learn from analyZing teacher’s role in collective
argumentation. The Journal of Mathematical Behavjor21(4), 423-440.
https://doi.org/10.1016/S0732-3123(02)00143-8

Yackel, E., & Cobb, P. (1996). Sociomathematicahmsg argumentation, and autonomy
in mathematicsJournal for Research in Mathematics Educati®r(4), 458-477.

Authors’ contact details

Jenni Ingram, University of Oxford (UK). Jenni.llagn@education.ox.ac.uk

Paul Alan Riser, University of Oxford (UK). Paulder@education.ox.ac.uk

20 AIEM, 16, 2019



J. Ingram & P. A. Riser

Experiences of problem solving in whole class intactions
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Problem solving is often considered to be an esdgoart of learning mathematics.
Mathematical problem solving involves a range aivitees and actions such as making
sense of the problem, making connections betweprtbblem and what is known, and
using a range of representations. The questionahges as to what experiences students
have of these activities in their everyday mathé&saessons. In this paper we examine
the whole class interactions around problems aotlem solving as they naturally
occur in mathematics classrooms. Thus, we are ewagnistudents’ ordinary
experiences of problem solving in their everydayhematics lessons. This contrasts
with existing research that focuses on studentsvigcaround cognitively demanding
tasks, or in lessons specifically designed to fooums problem solving. Using a
Conversation Analytic approach we examine the wiotdss interactions around the
introduction of tasks described by the teacher #wdwes as problems, and the
subsequent whole class interactions that followdgere the class worked on the
problem together. The data comes from two lessamms & corpus of 52 lessons taught
by 17 teachers in 8 schools. The examples wereeohas they serve to illustrate the
typical and ordinary treatment of problem solvingordinary mathematics classroom
interactions. Our analysis shows how students qyaatie in a very narrow range of
problem solving actions and that the actions that/tdo participate in are tightly
controlled by the teacher’s practices. Whilst thachers model many of the problem
solving processes, they do not draw attentionesdlprocesses or use them to scaffold
students’ future use of them. This is despite daehers using a range of discursive
practices, such as revoicing, that previous rebdaais advocated as a tool for engaging
students in mathematical practices such as proBlmng. The analysis reveals the
intricate way in which teachers’ discursive pragsianfluence and shape students’
experiences of learning mathematics. This raisqgications for the development of
mathematics teaching practices that consider ttyeeseial role of discursive practices
such as revoicing, rather than moves in isolafidre analysis also raises implications
for what students perceive and interpret problevirsg to be in mathematics.
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