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Abstract

In this paper, we draw on a models and modelingpective to describe the design of a sequence
of tasks, known as a model development sequeratehdls been used to research the teaching and
learning of mathematics. A central research goa nfodels and modeling perspective is the developme
of principles for the design of sequences of moddlsks and for the teaching of such sequences. We
extend our earlier research by elaborating how adelalevelopment sequence can be used to support
students in developing models that are not onlycrilgsve but also have explanatory power when
connected to existing mathematical models. In singjowe elaborate language issues about
representations and context as well as the impléatien strategies used by the teacher.
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Mas alld de modelos descriptivos: Cuestiones de istigacion sobre disefio e implementacién
Resumen

En este articulo nos situamos en la perspectivdd@dmodels and modeling’ para describir el
disefio de una secuencia de tareas, conocida comeeseia de desarrollo de modelos, utilizada para
investigar la ensefianza y aprendizaje de las matieasa Un objetivo central de la investigacion desd
esta perspectiva es desarrollar principios paraiskefio de secuencias de tareas de modelizaciéray pa
su ensefianza. En este trabajo nos proponemos ampléstras investigaciones anteriores elaborando
la forma en la que una secuencia de desarrollo ddatos puede servir para apoyar a los estudiantes a
desarrollar modelos que no sean sélo descriptigow también explicativos, especialmente cuando se
conectan a los modelos matematicos existentes. Blvaelaboramos cuestiones de lenguaje sobre
representaciones y contexto, asi como estrategiasydlementacion del profesor.

Palabras clave.Modelos explicativos; secuencias de desarrollomelelos; disefio de tareas;
modelos de ensefianza.

1. Introduction and background

As evident from the special issues in ZDM (2(8),20181-2)) and the published
work from the biannual conferences of the Inteoral Community of Teachers of
Mathematical Modelling and Applications, there arplethora of perspectives on the
meaning and role of mathematical modeling in tledfiof mathematics education.
Generally, mathematical modeling is understood amecting the realm of the real
world and the realm of mathematics (Niss, Blum &llBath, 2007) with different
emphases such as solving real world problems @glE979), teaching and learning
mathematics (Barquero, Bosch & Gascon, 2013), erstitial and critical aspects of
modeling (Rosa & Orey, 2015). Regardless of thegestive taken on mathematical
modeling, there are many challenges for researcheashers, and students in the
teaching and learning of mathematical modelingthla paper, we draw on a models
and modeling perspective on the teaching and legroii mathematics (Lesh & Doerr,
2003) to address three research areas in neetenfian.
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The first area of research is the study of how heesx can engage students in
meaningful activities that move beyond descriptivedels that apply already learned
mathematics to real world phenomena (Doerr, Arlgl&Misfeldt, 2017). In discussing
purposes of modeling, Niss (2015) contrasted datbeei and prescriptive modeling,
where the latter focuses on designing, prescrilmrgganizing or structuring some aspect
of an extra-mathematical domain. Other researdik@r$iestenes (2010) have stressed
that models can serve explanatory purposes. Tdaeweodels with explanatory power,
the modeler needs to transcend the particulars g@¥en situation, to connect one’s
developing model with other already known modelselated areas or disciplines. In
this paper, we discuss the strengths and poteiteamodels and modeling perspective
to the teaching and learning of mathematics foagimg learners in developing models
that provide not only descriptive but also explamapower about real world situations.

A second research area in need of attention is iexagnhow teachers can support
students in developing suitable language and reptasons to express both their
mathematical ideas and their ideas about a paaticeél world situation. A models and
modeling perspective emphasizes that students’ enstical ideas co-develop with
their understanding of real world phenomena. Teacheed to support students in
developing and using mathematical representations the related language when
learning mathematical content (Temple & Doerr, 2082udents also need to develop
the disciplinary language to describe and explamous real world phenomena. As we
will illustrate below, a model development sequencethe rate of change of light
intensity with respect to distance from a light meuprovides rich opportunities for
student learning, but also challenges both studamdsteachers in developing fluency
in using language and representations to descrim explain the underlying
mathematical structure and physical phenomenabf intensity.

A third research area in need of attention is thplémentation and teaching of
modeling in classrooms. Despite many positive dgwekents in research on the
effectiveness of various approaches to modelingtadent learning and material and
support for teachers, widespread classroom implétien of modeling has progressed
slowly (Blum, 2015). Although teaching mathematioabdeling appears to differ in
some significant ways from traditional approachedeaching mathematics (Doerr,
2007; Doerr & Lesh, 2011), the teaching practicesoeiated with mathematical
modeling have received somewhat limited attentimmf researchers (Lingefjard &
Meier, 2010; Maass, 2011; Wake, 2011). The divweenitd complexity of the multiple
cycles of the development of students’ models pssbstantial knowledge demands on
the teacher as teaching “becomes more open angredistable” (Blum & Borromeo
Ferri, 2009, p. 47). Responding to the openneswadeling tasks can be especially
challenging for teachers in traditional classroqiiaass, 2011), since such openness
requires strategies to support students in makiogrpss with the task without directly
showing them how to resolve their difficulties (befjard & Meier, 2010). The teacher
needs strategies to interpret the often unantiegpatassroom events, select tasks to
further the development of students’ models, arghga students in the self-evaluation
of their models without doing the task for them ébo 2007). Characterizing such
strategies and how teachers develop and learnitharkey research area.

In this paper, we address these three research ficsa a models and modeling
perspective on the teaching and learning of mathiesnand provide insight from the
design of, and our analysis of data from, a mo@ektbpment sequence focusing on
how light intensity changes with respect to distafiom a light source.
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2. Theoretical framework

The models and modeling perspective is based ordélsgyn of activities that
motivate students to develop the mathematics neauledake sense of meaningful
situations. In this perspective, models are defattonceptual systems (consisting of
elements, relations, operations, and rules govgrmteractions) that are expressed
using external notation systems, and that are tesednstruct, describe, or explain the
behaviors of other systems.” (Lesh & Doerr, 20031@). Students develop models as
they engage in multiple activities of making seoka particular context.

Much work done within the models and modeling pecspe draws ommodel
eliciting activities (MEASs) developed by Lesh and colleagues (Lesh,vidnoHole,
Kelly & Post, 2000). MEAS have been used to ingzgde the development of students’
models in a wide range of settings and contextéebick, Doerr & O’Neil, 2013).
Solutions to MEAs go beyond what is traditionalgquired of ordinary textbook
problems in that the solutions generally involveating a process that can be shared
with others and re-used in structurally similauattions. A single MEA, however, is
seldom enough for a student to develop a genedatizedel that can be used and re-
used in a range of contexts (Doerr & English, 2008sh, Cramer, Doerr, Post &
Zawojewski, 2003). Students need multiple and cdotdly diverse opportunities to
explore and apply relevant mathematical constrioeisg learnt. Anodel development
sequenc€MDS) is a framework that can be used for thegieand implementation of
such instructional sequences (Lesh et al., 200@bAck et al., 2013).

2.1. Model development sequences (MDS)

A model development sequence (MDS) begins witmadel eliciting activity
(MEA) that elicits students’ initial models aboutpaoblem situation. The MEA is
followed by one or morenodel exploration activitie@MIXAs) andmodel application
activities(MAAS), as shown in Figure 1. MXAs focus on thedarlying mathematical
structure of the elicited model, on the strengthyarious representations, and on
deepening students’ understandings of ways of uaintjinterpreting representations.
MAAs engage students in applying their model to retuations, often resulting in
further adaptations to their models, and refinihgirt language for interpreting,
describing and explaining the context. Throughtvet MDS, students are engaged in
multiple cycles of descriptions, interpretationsenjectures and explanations that are
iteratively refined while interacting with othewuslents and participating in teacher-led
class discussions (Doerr & English, 2003). The reémbathematical goal of the MDS
in this paper is describing, interpreting and eixphg the behavior of the non-linear
phenomenon of light intensity as it changes wipeet to distance.

Model
Eliciting
Activity

Model Model
Exploration Application
Activities i

Activities
Figure 1.The general structure of a MDS

I
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3. Aim and research goal

Our goal in this paper is to discuss research sskredesign and implementation of
a sequence of modeling tasks that goes beyondsthefumathematics to describe a real
world phenomenon to also provide explanatory pofeerunderstanding why the
phenomenon behaves as it does. To this end, weratalihe design and implementation
of a MDS aimed at supporting beginning universitydents in moving beyond a
descriptive model in order to develop an explanataodel of the changes in light
intensity with respect to the distance from a pemrce. We also focus on the role and
function of the language students need to devetopuriderstand the underlying
mathematical structure of their models and to ustded the physical context of light
intensity. We examine the teaching strategiessbhpported the students in developing
their models and the challenges faced by the teache

4. Methodology, setting, task design, data and analis

4.1. Methodology and setting

This study used design-based research as an appoostady teaching and learning
in the classroom setting (Cobb et al.,, 2003). TWe tuthors and the teacher
collaboratively used the models and modeling petspe and model development
sequences (Lesh et al., 2003) to design a six-s@@kner course for students preparing
to enter their university studies in engineeringhi@ United States. We have previously
reported on the design of this summer course (Adkp Doerr & O’Neil, 2013;
Arleback & Doerr, 2018) as well as on its effectiees (Doerr, Arleback & Stanic,
2014). We report our analysis of a MDS used irstimamer that was intended to support
students in developing an explanatory model oftligitensity. The entire summer
course was organized around modeling tasks, atie iactivities leading up to the MDS
reported on in this paper, students regularly wabikesmall groups and had developed
and become proficient with several related concapts skills. In particular, students
could (a) describe and analyze (using averageofatbange) how position varies with
time in the context of motion; (b) distinguish been linear and exponential functions;
(c) analyze the average rates of change for annexp@al function and (d) could
transform an exponential function in order to sinats graph and shift it vertically and
horizontally (Arleback, Doerr & O’Neil, 2013). Theacher had four years of experience
teaching secondary and college students, and gs$er third year teaching the summer
course. There were 35 students in two sectionsi®third iteration of the course, all of
whom had volunteered to participate in the studgvén of the students were female
and 24 were male. All students had completed faary of study of high school
mathematics; 21 students had studied calculugim$thool and 14 had not studied any
calculus. All students had taken a prior coursghysics in their secondary education.

4.2. The design of model development sequences éxplanatory models

The overall aim of the MDS was for students to dgyve model of light intensity
with explanatory power. The teacher needed to engaglents in developing language
and representations about their understandingseopthienomena of light intensity and
light dispersion. In order to move beyond a desisgmodel of changing light intensity,
the students would need to explore a new matheahatioucture (an inverse square
proportional relation between distance from a psmirce and light intensity) and to
connect that structure to another model, namely ahahe spherical geometry. The
central task for the students was to develop a hraddke intensity of light with respect
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to the distance from a light source that not ordgatibed the situation, but also held
explanatory power in terms of the physics of lighénsity and the spherical geometry.

The MDS began with an MEA designed to elicit thedsints’ initial models about
(a) how intensity varies depending on the distdrara a point source, and (b) how light
disperses from a point source. Students were pexbenith the one-dimensional
scenario of an approaching car and were asked dtzlsigraphs showing how the
intensity of the car’'s headlights varied dependomgthe distance to the car and to
describe how light disperses from a point sourdas Task revealed students’ initial
models about the changing intensity of light asiraction of the distance from a light
source. They were also asked to draw some repegsentays of light leaving a point
source. These images would ultimately sustain gaeatory model of the behavior of
light intensity. The MEA was thus designed to pdava foundation for the teacher to
engage students in activities that moved beyong@lgifinding a function of best fit for
real light intensity data to understanding why ligitensity behaved in a certain way.

The second task in the MDS was an MXA designeai¢age students in comparing
and contrasting their initial models of light ingéty and dispersion in a small group
setting and in a whole class setting. Students eggedsentations (primarily graphs) and
developed language to interpret those represengatm express their models of how
light intensity varies with distance from the saurBased on previous implementations
of the summer course, we anticipated that the ststmodels would be descriptive and
that many students would characterize light intgres linearly dependent on distance,
despite the fact that all of the students had takenior course in physics where they
had studied the inverse square law that appligssrsituation.

In the third task, an MAA, the students revised addpted their initial models by
collecting and analyzing 15 data measurementsgbt intensity at one cm intervals
from a light source. From a design perspective, M#A engaged students in self-
evaluating the goodness of their linear and noeadinmodels in describing and
explaining their real world data.

The fourth task, a second MXA, was designed t@thice, explore and connect the
geometry of the sphere to the context of lightnstey in order for the students’ models
to have explanatory power. This MXA connected tadke students’ initial ideas about
how light disperses from a point source in termiggbit rays in order to support students
in exploring and understanding an area model for light intensity varies with distance
from a light source. The teacher introduced a nevasentation of light intensity as a
function of distance. This representation consistddur 2D images with light intensity
represented by number of dots per square inclvahglistances (see Figure 4). Students
were asked to determine the intensity at otheadcss from the light source. Students
generated descriptive models of the data, but gkedgwith making a connection from
this representation to the sphere surface area.

The fifth activity of the MDS, and the third MXA, a8 designed to connect the
inverse square model based on the 2D images tcsgherical geometry. A new
representation was designed to support studerdsrinecting their representations of
light dispersion to the surface area of a sphedédfatent distances from the source (see
Figure 7). This new representation, a larger 4eieardboard set of a light-emitting
candle was used by students to physically enact lighw rays emitted from a point
source disperse and look at different distancas fitte source. The MDS ended (after
about 6 hours work) with the students summariznaiy tanalysis of their collected data
and their understandings of their representatidtigtat dispersion in a written report.

9 AIEM, 17, 2020



Moving beyond descriptive models

4.3. Data and analysis

The data sources included videotapes of all classiens, written field notes and
memos, class materials such as worksheets andalretboard work, the teacher’s
lesson plans and annotations made by the teachiergdine lesson. Following each
lesson, there was an audio-taped debriefing sesstbrihe teacher, which captured the
teacher’s reflections on the lesson and any chatogiéee plans for subsequent lessons.
The MDS took place over three lessons; each lelsstad one hour and 50 minutes.
The analysis of the data took place in two phaSeasistent with the iterative approach
of design-based research, the first phase of asdlysk place during the three days of
teaching. In this phase, our analytic approach avasllaborative examination of the
teacher’s actions in and interpretations of clamsrevents. The research team met with
the teacher and discussed the tasks in the MD®ytigeess of the class as a whole, and
our observations about students’ thinking about timathematical representations for
expressing their ideas. Analytic memos were writigmqmembers of the research team
to document their emerging understandings of thehieg practices and observations
about student learning. In particular, we attenttedhow the teacher supported the
students in developing mathematical language abeirtrepresentations and contextual
language for explaining the behavior of light irdiéy, and to the strategies used by the
teacher to address the challenges arising froropgkaness of the modeling tasks.

In the second phase of the analysis, we examireedlissroom videos and written
student work using grounded theory (Strauss & Gprb998). Codes were developed
to categorize the students’ reasoning and answersagh of the questions in the
activities of the MDS, focusing on capturing thedgints’ models of how the light
intensity varies with distance from the light saiend how light disperses from a point
source. The students’ final lab reports were reatla@ded, focusing on how students’
interpretations and descriptions of how the intgngaried with the distance from the
light source and included an explanatory model. &halyses in particular focused on
how the students moved from a descriptive modehahges in light intensity to a model
that had explanatory power when connected to tbengey of the sphere.

5. Results

As we report on how the students’ initial ideas dedcriptive models developed
towards an explanatory model of light intensitytlass MDS unfolded, we highlight the
development of the students’ capacities to intéyplescribe and explain representations
and the context of light dispersion from a pointree, as well as the challenges for the
teacher that surfaced and what strategies shetosettiress these.

5.1. The MEA. Students’ initial models of light inensity and light dispersion

The students’ initial models of the relation betwédight intensity and the distance
from the light source were revealed in the MEA arglshown in Figure 2. Although all
students had taken a course in physics nearlyfdhhem $=28, 83%) drew a linear
relation between the intensity of a car's headgind the distance from the car. All but
one of these linear graphs (C and D in Figure 2jectly show the light intensity
decreasing, but incorrectly show it as decreasirganstant rate. This is likely due to
students assuming that the speed of the approachimig constant, and confusing the
constancy of speed with the constancy of the deeréa light intensity. The four
students who drew graph A, with its asymptotic b#braat they-axis, may have been
drawing on their formal physics knowledge of theerse square law for light intensity.
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Graph  Number of students
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Figure 2 Students’ initial models of intensity vs. distarfoom light sourcen=34)

When asked to “Draw some representative light tegging the light source” the
students drew figures of light dispersing as cdikesrays, parallel rays or waves (see
Figure 3). Students drawing a cone-like model (Baye a potential rationale for
explainingwhy the light intensity decreases when distance ise®aln contrast, the
parallel model (3B) implies a constant light intéysindependent of distance. One
student drew the light dispersing as waves (3Cl) sidents concluded that the light
intensity would decrease as distance increasestlidents expressing the model of light
dispersion shown in Figure 3B did not express dliconvith their descriptive models
of light intensity decreasing with respect to dist& (as shown in Figure 2).

A. Light rays “cone-like” B. Light rays perpendieul | C. Light disperse as wav+s
- '
S Nee—=
SN T NT—
~— L= '
28 students 5 students 1student |

Figure 3.Students’ initial models of light rays leavingight source (totah=34)

5.2. The first MXA. Exploring student ideas

In the first MXA, the teacher wanted to explore tepresentations of changing light
intensity and light dispersion that were elicitedhie MEA. She asked the students about
the meaning of their representations on the chaimgigght intensity: “Imagine the tail
lights of a car moving at a constant speed away frou. Is the light intensity (1) fading
at a constant rate, (2) fading slowly at first &mein quickly, (3) fading quickly at first
and then slowly, and (4) unsure.” The teacher ddhe students and displayed for them
the results shown in Table 1. She routinely usedajbtion of “unsure” to encourage
students who see difficulties or ambiguities inugstion to continue thinking (i.e., to
keep self-evaluating their models), without beiogéd to choose a particular response.

Although all of the students had had a prior coumgghysics in secondary school,
where the relation between light intensity andatise was studied, only 6 (17%) of the
students correctly identified the rate at which ligat intensity fades: quickly at first
and then slowly. The majority of the students codel that either the light faded at a
constant rate (49% of the responses) or slowlyrstt &nd then quickly (20% of the
responses). Several students (14%) expresseditiwrtainty.

Rather than resolve the differences for the stisjéiné teacher commented that she
wanted to know from them “why did you choose thsveger you chose?” To accomplish
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this, she arranged students in groups to discuss dhswers. Each of these teaching
strategies —eliciting their ideas with the inittplestion, asking them to engage in peer
discussion, and listening to their reasoning— skteeencourage the students to self-
evaluate their responses to the question on chagutigint intensity and to develop their

language about the underlying mathematical stracnd the context of the phenomena.

Table 1Student responses to the rate at which light intgrechanges

Responses Number and percent response
Fading at a constant rate 17 (49%)

Fading slowly then quickly 7 (20%)

Fading quickly then slowly 6 (17%)

Unsure 5 (14%)

After a few minutes of peer discussion in smallugp® and teacher listening, the
teacher pulled the class together for discussiamde®its of multiple groups were soon
actively engaged in arguing whether or not thetligas fading at a constant rate. Many
of those who thought the rate was constant werairgggthat it had to be constant
because the speed of light is constant ("Isn’tgpeed of light constant?”) or because
the car’s speed was constant (“The car is movingyaat a constant speed so | think the
intensity decreases at a constant speed”). Aftstudent refocused the discussion
(“...Yes, but the speed of light is the travellisgeed of light. We're talking light
intensity which is what you see!”), many studenttered ideas, explanations and
experiences such as the far visibility of planedmg lights in airports and relative
motion in different reference frames (Arleback &ddg 2015).

From a teaching perspective, modeling tasks tlaat dn students’ thinking present
a challenge to the teacher since it is not possibfally anticipate what all the student
ideas might be, what they would mean, and how wWaayld relate to the central question
about the rate of change of intensity of light. Tdiscussion engaged students in
expressing and developing language about the dofadiculating the constancy of the
car’'s speed and distinguishing between the spekghtfand the intensity of light). The
discussion was ended by the teacher, but not lwidgaa conclusion for the students.
Instead, the teacher continued to engage the swiderelf-evaluating their emerging
models of light intensity by initiating the nexsta("we are going to sort this out”) — an
MAA of collecting light intensity data that woulchable the students to resolve the
guestion by applying their existing linear and nimear models to actual data.

5.3. The MAA. Describing changing light intensity

In the MAA, the students worked in groups and a@id 15 measurements of light
intensity at one cm intervals from a light sourdsing their calculators to graph their
data, they quickly found that the light intensitgsmnot decreasing linearly. In this way,
they resolved for themselves the open issue frenMBA and the first MXA about how
the light intensity was changing with respect ® distance from the light source. Based
on prior implementations of the MAA, we knew thitstudents would be able to find
a function that provided a reasonably good deseait for their data, but that many
of those functions would be exponential decay fimmst which had been studied earlier
in the course. We anticipated that only a very &éwhe students would come up with
inverse square functions. However, the inversersguaction can provide the basis for
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an explanatory model okhy light intensity changes as it does. This poseccw n
dilemma to the teacher: how to connect the studdessriptive models of light intensity
to an explanatory model, drawing on the underlymgthematical structure of the
spherical geometry, without directly presentingpithe students? In the next sections,
we present the two MXAs developed by the reseascivith the teacher to draw on
students’ images of light intensity and light disgpen, elicited in the MEA, to move
beyond descriptive models to an explanatory mool@hected to the spherical geometry.

5.4. The second MXA. Explanatory representations dfght intensity

The second MXA explicitly focused on students’ iraagof light intensity.
Following the data collection and the resultingprsof the MAA, the teacher posed a
guestion intended to further develop students’ es@ntations of light intensity. The
students were asked to interpret a “dot” represiemaf intensity at various distances
from a light bulb and to find the intensity at 2f@nd 6 feet from the bulb (see Figure
4). The students had difficulty understanding asthgi this dot representation of light
intensity. The teacher then introduced the tabpresentation shown on the right in
Figure 4. The students recognized that an equétiorg this data would be useful in
finding the intensity at two unknown distancespae student commented, “we need an
equation, but we don’t know what it would be.”

£ 8 WS Distance  Intensity
Sl (feet) (LIV)
Sl 2 ?
g 3 169
4.4 81
5.6 49
6 ?
11.2 12.25

4.4 feet 3 feet

Figure 4 A dot and table representation of light intensity

At this juncture, the teacher polled the studemtsnid out which parent graph they
thought would best correspond to the table of dhte revealing students’ ideas about
a possible symbolic representation, shown in Table

Table 2.Student responses to what parent graph correspotaitee dot data

Parent graph Number and percent response
y =1/x? 12 (34%)
an exponential function 9 (26%)
y=1/x 7 (20%)
y=1/Vx 7 (20%)

The teacher asked the students to resolve theiguest finding an appropriate
equation for the data, another instance of theherécuse of the self-evaluation strategy.
Using their graphing calculators and working witlrtpers, the students rejectgd=
1/+/x andy = 1/x as parent graphs. In one of the two classes, irs pf students
came up with two functiong: = 1400/x?%, y = 715(0.58)* + 12, both of which fit
the given data reasonably well (see Figure 5). Bhislents’ response had not been
anticipated by the teacher in her planning andheftuncertain as to how to proceed.
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Unlike in the first MXA, where the teacher knew ttleallecting and graphing data
would enable the students to self-evaluate andeabieir ideas about the linear or non-
linear change in light intensity, the teacher waswe how to engage the students in a
critiqgue of these two functions. Both functions yded a reasonably good description
(or fit) of the data. The teacher juxtaposed thgqution of the graph of each function
and the data, shown in Figure 5, and turned thstaureover to the students, and instead
of asking about best fit, the teacher asked “wljfahction] makes more sense?” In
asking about making “more sense”, the teacher mtagding to support the students in
expressing how their emerging models are conndctede context (and physics) of
light dispersion. However, many students were niecased on the best fit.

Several students saw the exponential function agémaccurate” and one student
argued that the graph of= 1400/x? would show up in the second quadrant and hence
“wouldn’t be accurate to the data.” Still uncertamto how to engage the students in a
critiqgue of these functions, the teacher re-pditexstudents as to which parent function
would best model the data. This time, the studshifted to an exponential function
(86%) rather than an inverse square function (14e}polling the students gave the
teacher some additional time to think about howrtaceed; during which she quickly
conferred with a member of the research team whygesied focusing students’
attention on the long-term behavior of both funtsioThe teacher asked the students to
compare the long-term behavior of the two functitmbuild on their intuitions that the
intensity of light should get “closer and closee&yo as we get out further and further.”
This led students to reject the exponential deaagtfon, which did not approach zero.
This engaged students in developing language toemrtheir understanding of the
graphical representation to the physical phenomaﬁohanging light intensity.

"‘J
Q’ru“(’w -
| :
\ p
Nl A "

Figure 5y = 1400/x? vs.y = 715(0.58)* + 12

Knowing how to further the students’ own thinkimgthe moment of teaching, was
neither obvious nor easy from the perspective eftdacher. The teacher ended the
second MXA by focusing students’ attention on thgaal question ofwhy an inverse
square representation was reasonable. She saithé¢iahing | want you to think about
is ‘why'? Why does this inverse square function ma&nse in this [physical] situation?”
To answer this question, the students would neédtioer develop their representations
of light intensity. At this point, the students haat connected the “dots” representation
introduced by the teacher to their images of ldjgpersion. Importantly, the students’
representations of light dispersion still needele@onnected to the spherical geometry.

5.4. The third MXA. Exploring and connecting represntations of light
intensity

In the next lesson, the teacher drew on studenmitsali models of light dispersion
from the MEA and again focused the students’ atten making sense of how light
intensity is changing with respect to distance. Bégan by asking the students about
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“why it [an inverse square function] would make s&P’ and “How do you think about
light coming out of a light source?” Several studenesponded with ideas about light
going in “all directions equally,” “travels evenlyand “in all directions”. The teacher
pursued these ideas and encouraged the studesitetoalize their representations by
asking “what image do you think of when you thinkadl directions equally?” An
important shift in the discussion occurred as dndent offered an image of rays: “near
the point source, they are really close. But thaytgo apart. ... As they [the rays] get
farther from the point source, they get farthenfreach other. ... And that is why the
intensity is less.” This student had developed lagg that moved beyond describing
the decrease in intensity with increasing distanceffering a justification about why
this is so, connecting the change in light intgnaith the changing distribution of light
rays hitting a line segment of a given length dfedent distances from the light source.
Several other students offered an image of “sphenesing out from the light source,
connecting these two images of light dispersiothéosphere geometry.

(A) (B)

Figure 6.Students’ images how light comes out of a lightree

The discussion went on as the teacher built orethmeages, with student generated
representations of enlarging 2D-representatiorspbéres and re-visiting the dot-based
representation of intensity (see Figure 6). Asdiseussion continued, she recalled for
students the formula of the sphere surface areaupport students in connecting their
2D models of light dispersion from a point sourgeat3D-spherical model, and based
on the their difficulties in making this connectionthe second MXA, the teacher had
designed a 3D representation (see Figure 7) tleatiséd to engage students in acting
out and visualizing the light intensity phenomeihe students moved from the dots
representation, to a table representation (seadé-#jy to a symbolic representation, to
images of rays and spheres, and to the formulthésurface area of a sphere.

Figure 7.A 3D-model of light dispersion from a point source

At this juncture, the teacher was again faced d@biding what to do next. Rather
than guide the students through bringing thesesitiegether, the teacher turned these
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elements of representing their model of changigigtlintensity back to students, asking
them to think “about all these ideas and put sohtiei®together ... One of the questions
is why do you think light behaves this way [as awverse square]?” She encouraged
them to use the representations that had beensdsdas “ways to reason about that”
and thus develop and refine their representatibrehianging light intensity. The final
task for the students was to complete a writtentefhat summarized their findings
about how light intensity changes with respectigtashce from a light source. In the
report the students described and explained theoeplures of collecting and analyzing
data, fitting a function to their data, generatengd describing various graphs, and
explaining why the function and graphs made sem$leel context of the phenomena.

Towards the end of the MDS, students were beginioingally express explanations
for why the inverse square behavior of light intgnselates to spherical geometry.
However, the lab reports showed that most studentiseir written accounts did not
move beyond describing their data of the phenonoéright dispersion from a point
source. Only six of the 19 reports attempted tdaexpvhy the phenomena qualitatively
is explained by an inverse square function, and fidd so successfully. In five of the
six reports the students drew either 2D or 3D rgm&ation mirroring those in Figure 6
and 7. All the students had been taught the inv&gaare behaviors of light intensity in
prior physics courses, and some of the studentd cecall it. However, our data provide
no evidence that any of the students had undersidndthis model explained the
behavior of light intensity, but many studentstetdito express their understanding and
representations of the inverse square area modalds the end of the MDS.

6. Discussion and future research

The MDS analyzed in this paper was the first exgm@e for the students in
developing an explanatory model and presented tiémmew expectations. Our results
show that the students, having found an exponehiraition fitting the data, were
satisfied having developed a descriptive model ansg thehow question and did not
see any need for an explanatory model. To answemtily question requires an
explanatory model, but the students struggled veldting the context of light intensity
to the structure and representational aspectsairiderlying spherical model. Students
had difficulties in shifting to a 3D model basedtba 2D dots representation the teacher
introduced, but by supporting the students to dgvé&nguage around the phenomena,
visualizing their ideas, and introducing a new espntation, the teacher facilitated the
students in expressing how their emerging modetsected with the spherical model.
The MDS provided the researcher and teacher withohto structure the students’
learning based on what was produced in class instexf the design of the tasks. From
a models and modeling perspective and analogouslyesearch and study paths
(Barquero, Bosch & Gascoén, 2013), the sequencgseaxtions motivating and guiding
the students’ work was designed to create a naeanf@xplanatory model. However,
given that students need multiple opportunitiedewelop a generalized model that can
be re-used in a range of contexts (Doerr & Engl€l93; Lesh et al., 2003), we suspect
that engaging students in one or more MAAs fromepttontexts having the same
underlying inverse square structure (such as twdy lgpavitational forces, two point
charges or sound intensity) would have further fiested the explanatory power of the
spherical model for the students. This, howevegdasdo be investigated further.

Our results overall highlight the importance foy {fie activities students work with
to be dynamic, motivated by badtlow andwhyquestions, and engaging students in self
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-evaluating their emerging models; and (2) theheato support students in developing
language and representations when learning mathlehabntent to facilitate the
development of explanatory models. The MDS showas ¢éimgaging students in self-
evaluation can be built into the MDSs by the desifjthe MEA and be facilitated by
suitable teaching strategies. These strategiespguanied by MDS task design, provide
a feasible and productive way for the teacher $paad to the openness of modeling
activities discussed by Maass (2011) and Lingefgird Meier (2010). The first MXA
illustrated how the teacher can reveal and useestatthinking and ideas by focusing
on students’ language use and representationsasattidents could self-evaluate and
further develop their models by sharing them witheo students. The design of the
MAA engaged students in collecting data that erthlileem to self-evaluate the
goodness of their emerging models about how ligtenisity changes with respect to
distance from a light source. It resolved the tesgdilemma that would otherwise have
confronted the teacher as to how to resolve stgteonflicting ideas. However, to
move beyond simply descriptive models of bestli¢, design of two additional model
exploration activities enabled the teacher to supmbudents in exploring and
interpreting area based representations of ligkegnsity and dispersion that were
connected to their own images of light and to tpleesical geometry, and ultimately
provided an explanatory model for changes in ligtensity. These aspects of designing
and teaching using model development sequencesngento need attention from
research, and a key goal for such research shettllfocus on formulating, testing and
evaluating design principles and implementatioatstries for model exploration and
model application activities that move studentstels from descriptive to explanatory.
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Moving beyond descriptive models: Research issuesfdesign
and implementation

Jonas Bergman Arleback, Department of MathematiokOping University
Helen M. Doerr, Department of Mathematics, Syradusersity

We draw on a models and modeling perspective ontehehing and learning of
mathematics and report on the design, analysis,results of a model development
sequence focusing on how light intensity changek waspect to distance from a light
source. Working collaboratively with the teacherd amsing a model development
sequence as a framework for task design, we higthhgw the tasks in the sequence
supported the students’ development of a modelishatt only descriptive but also has
explanatory power. This sequence was implementezhl®xperienced teacher with 35
students as part of a six week summer course, ipngpthem for their first year of
university studies in engineering. The model deprlent sequence starts with a model
eliciting activity on how light intensity changestiwrespect to distance and on how light
disperses from a point source. The students’ idieited by this task are revised and
developed in subsequent model exploration and magpplication activities. Many
students had an initial model of linear decreafesrastudents represented light intensity
as decreasing non-linearly drawing on familiar Medé exponential decay. In addition
to supporting students in developing language athaiit representation and the context
of light intensity, the teacher encouraged therselbevaluate their developing models
of changes in light intensity. Thus, the teacheyaged students in a model application
activity to evaluate their models of linear or erpotial decrease by collecting and
analyzing light intensity. Many students found apanential function that provided a
reasonably good descriptive fit of their data angeey few students found an inverse
square function to fit their data. Only the lattenction can provide the basis for an
explanatory model aivhy light intensity changes as it does. To move texgrlanatory
model, the teacher implemented two additional meaploration activities designed to
connect to students’ earlier ideas and representatibout light dispersion as rays from
a point source and to connect to an existing maotehely the sphere geometry. By
exploring and interpreting area based representatd light dispersion connected to
students’ images of light and to the sphere gegmstudents ultimately developed an
explanatory model for changes in light intensitgdzhon an inverse square model. In
order for students to move beyond descriptive neodeld to develop explanatory
models, our results highlight the importance of tfi§ activities to work with to be
dynamic, motivated by how and why questions, arghgimg students in self-evaluating
their emerging models; and (2) the teacher to sugbodents in developing language
and representations when learning content in dodpromote explanatory models. The
model development sequence presented in the phpessghat engaging students in
self-evaluation across the model development semguisrsupported by task design and
teaching strategies. These strategies, accompbyietdel development sequence task
design, provide a feasible and productive waytierteacher to respond to the openness
of modeling activities and to support studentsemeadoping explanatory models.
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