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Diseño e investigación para el desarrollo de teorías de instrucción local  

Resumen 

La innovación en educación matemática necesita de la implicación de profesores, autores de libros 

de texto, legisladores e investigadores. Este artículo esboza el papel y la importancia del diseño 

instruccional orientado hacia nuevas teorías de instrucción local en educación matemática. Muestro esta 

aproximación con un estudio donde se investigó cómo apoyar a los estudiantes en el desarrollo de los 

principios básicos de las matemáticas del cambio. El estudio combina diseño e investigación en tres fases 

sucesivas. En la primera fase se diseña una trayectoria hipotética de aprendizaje y actividades de 

enseñanza, en la fase del experimento de enseñanza se implementa la trayectoria, y en la fase de análisis 

retrospectivo se reflexiona sobre las hipótesis adoptadas. Así se estructura un proceso cíclico de 

(re)diseño y desarrollo de enseñanza innovadora. Se espera que la teoría de instrucción local resultante 

cree oportunidades para que profesores, autores de libros de texto e investigadores puedan adaptar los 

resultados a su investigación o práctica de aula, teniendo en cuenta el contexto en el que trabajan. 

Palabras clave. Diseño de tareas; teorías de instrucción local; educación matemática; investigación 

de diseño. 
 

Design and research for developing local instruction theories 

Abstract 

Innovation in mathematics education needs the involvement of teachers, textbook authors, policy 

makers and researchers. This paper sketches the role and importance of instructional design aiming at 

new local instruction theories in mathematics education. The approach is shown with a study that 

investigated how students can be supported in the development of the basic principles of the mathematics 

of change. The study combines design and research in three successive phases. In the first phase a 

hypothetical learning trajectory and instructional activities are designed, in the teaching experiment 

phase the trajectory is acted out, and in the phase of the retrospective analysis the articulated hypotheses 

are reflected upon. In this way, a cyclic process of (re)design and development of innovative teaching is 

structured. The resulting local instruction theory is expected to create opportunities for teachers, textbook 

authors and researchers to consider contextual factors and to adapt results for their research or teaching.  

Keywords. Task design; local instruction theories; mathematics education; design-based research. 

 

Desenho e pesquisa para o desenvolvimento de teorias de instrução local 

Resumo 

A innovação em educação matemática carece do envolvimento de professores, autores de manuais, 

legisladores e investigadores. Este artigo esboça o papel e a importância do esquema educacional 

orientado para as novas teorias de educação local em educação matemática. Apresento esta abordagem 

mediante um estudo onde se investigou a forma de apoiar os alunos no desenvolvimento de princípios 

básicos da matemática para a mudança. O estudo combina esquematização e investigação em três fases 
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sucessivas. Na primeira fase esquematiza-se um percurso hipotético de aprendizagem e atividades de 

ensino, na fase de experiencia de ensino implementa-se o percurso e, na fase de análise retrospetiva, 

reflete-se sobre as hipóteses adotadas. Estruturou-se um processo cíclico de (re)esquematização e 

desenvolvimento de métodos inovadores de ensino. Espera-se que a teoria de educação local resultante 

crie oportunidades para que professores, autores de manuais e investigadores possam adaptar os 

resultados às suas investigações ou prática letiva, tendo em consideração o contexto no qual trabalham. 

Palavras chave. Construção de tarefas; teorias de instrução local; educação matemática; pesquisa de 

desenho. 

 

Conception et recherché pour le development de théories de l’instruction locale  

Résumé 

L’innovation en didactique des mathématiques nécessite l’implication des professeurs, des auteurs 

de manuels, des législateurs et des chercheurs. Cet article propose une esquisse du rôle et de l’importance 

de la conception pédagogique orientée vers de nouvelles théories de l’instruction locale pour 

l’enseignement des mathématiques. Nous illustrons cette approche à travers une étude qui s’est donné 

pour but d’explorer comment les étudiants peuvent être soutenus dans le développement des principes 

fondamentaux des mathématiques du changement. Cette étude combine conception et recherche en trois 

phases successives. Dans la première phase, nous proposons la conception d’une trajectoire 

d’apprentissage hypothétique ainsi que d’activités pédagogiques; dans la phase d’expérimentation de 

l’enseignement, la trajectoire hypothétique est mise en œuvre ; enfin, dans la phase d’analyse a posteriori, 

les hypothèses avancées sont analysées. De la sorte se structure un processus cyclique de (re)conception 

et de développement d’enseignements innovants. La théorie de l’instruction locale qui en résulte devrait 

permettre aux enseignants, aux auteurs de manuels et aux chercheurs d’adapter les résultats à leurs 

recherches ou à leurs enseignements, en tenant compte du contexte dans lequel ils travaillent. 

Paroles clés. Conception de tâches; théories de l’instruction locale; didactique des mathématiques; 

recherche orientée par la conception. 

 

1. Introduction – why design is needed 

One of the challenges in mathematics education research is trying to understand and 

improve teaching practices. In a traditional experimental research-design teaching 

program A is compared with teaching program B. But what to do when teaching program 

B is not available yet? Case studies and ethnographic studies offer better opportunities 

to describe characteristics of a certain teaching program in a specific context, but it may 

still be difficult to derive innovative characteristics of a teaching program. When we are 

interested in ways to change or innovate an educational situation for which no solution 

is at hand yet, something needs to be designed and the process of teaching and learning 

that is triggered by this design needs to be investigated, and in most cases redesigned. 

Such a cyclic process of design and research is referred to as design-based research. In 

design-based research theory development happens in interaction with experiments, 

experiments to understand and improve classroom situations (Bakker, Doorman & 

Drijvers, 2003). Characteristics of design-based research are that its aims are to develop 

theory, it is interventionist, it has a prospective and a reflective component in 

consecutive research cycles, and it does real work (ecological validity) (Cobb, Confrey, 

diSessa, Lehrer & Schauble, 2003). The shift from a traditional experimental research-

design to design-based research aligns with a shift from questioning what teaching 

program works to how and why a teaching program works. 

One of the tasks for the mathematics education research community is to involve 

and support teachers in innovation-oriented processes. The resource for communicating 

an innovation-oriented idea with teachers that is at the core of this paper is a so-called 

local instruction theory. A local instruction theory embeds a sequence of activities for 
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teaching a specific topic along with a theoretical underpinning of the most prominent 

characteristics of the sequence. This local instruction theory is expected to enable 

teachers to adapt tasks to the abilities and interests of students, while keeping the original 

end goals of a new and innovative approach (Gravemeijer, van Galen & Keijzer, 2005).  

Design-based research in the context of this paper requires a process in which the 

design of instructional activities and teaching experiments are intertwined with the 

development and analysis of instructional theories for a specific topic. I will discuss a 

study on the introduction of the basic principles of calculus with the aim to illustrate the 

characteristics of such a design-based research approach. This approach tries to ensure 

a systematic process of design and analysis that offers opportunities to generalize 

findings over specific educational contexts. Therefore, the study has a dual goal: 

- on the one hand, answering the question on the potential of a teaching and learning 

trajectory for the basic principles of calculus, and  

- on the other, investigating and describing this potential in such a way that the results 

can be generalized and adopted by other teachers and researchers in other contexts.  

Given these goals, design-based research or developmental research (Bakker, 2018; 

Gravemeijer, 1994, 1998) seems to be an appropriate research method. Cobb et al. 

(2003) refer to this type of research as performing design experiments, which they 

elucidate in the following manner: 

“Prototypically, design experiments entail both “engineering” particular forms of learning 

and systematically studying those forms of learning within the context defined by the means 

of supporting them. This designed context is subject to test and revision, and successive 

iterations that result play a role similar to that of systematic variation in experiment.” (Cobb 

et al., 2003, p. 9) 

In this description, the two central aspects of this paper come to the fore in the design 

of means of support for particular forms of learning, also referred to as didactical 

engineering (Artigue, 2009), and the study of those forms of learning. In the study under 

discussion, the backbone of the design is formed by the development and revision of a 

hypothetical learning trajectory for the basic principles of calculus.  

2. Design principles and design methodology 

Design-based research has a cyclic character in which thought experiments and 

teaching experiments alternate. A cycle consists of three phases: preliminary design, 

teaching experiment, and retrospective analysis. A second feature of design-based 

research is the importance of the development of a learning trajectory made tangible in 

instructional activities. The design of instructional activities is more than a necessity for 

carrying out teaching experiments. The design process forces the researcher to make 

explicit choices, hypotheses and expectations that otherwise might remain implicit. The 

development of the design also indicates how the emphasis within the theoretical 

development may shift and how researcher’s insights and hypotheses develop. As 

Edelson (2002) argues, design is a meaningful part of the research methodology:  

“(...) design research explicitly exploits the design process as an opportunity to advance the 

researchers understanding of teaching, learning, and educational systems. Design research 

may still incorporate the same types of outcome-based evaluation that characterise 

traditional theory testing, however, it recognizes design as an important approach to 

research in its own right.” (p. 107) 

This is particularly the case when the theoretical framework is under construction. 



Design and research for developing local instruction theories 

AIEM, 15, 2019 
32 

2.1. Phase 1: Design principles and HLT 

The design of instructional activities in the study focused on in this paper includes 

the development of student text booklets and teacher guides. While designing these 

materials, choices and intentions were captured and motivated. When the materials were 

about to be finalised, these aims and expectations were described at the task level. Key 

items, that embodied the main phases in a hypothetical learning trajectory, were 

identified. These items reflected the relevant aspects of the intended learning process 

and were based on the conceptual analysis of the topic. The identification of key items 

guided observations and prepared for the retrospective data analysis. Finally, teacher 

guides as well as observation instructions were written, to make intentions and expec-

tations clear to teachers and observers. During the design phase, products were presented 

to colleagues, teachers and observers. This led to feedback that in some cases forced the 

researcher to become more explicit about goals and aims, and that provided 

opportunities for improving all the materials. 

While designing instructional activities, the key question is what meaningful prob-

lems may foster students’ cognitive development according to the goals of the HLT. 

Three design principles guided the design process: guided reinvention, didactical 

phenomenology and emergent models.  

The design principle of guided reinvention involves reconstructing a way of 

developing a mathematical concept from a given problem situation that gives the 

learners the impression that they (could) have invented the concept themselves 

(Freudenthal, 1991). A method for this can be to try to think how you would approach a 

problem situation if it were new to you. In practice, this is not always easy to do, because 

as a domain expert it is hard to think as if you were a freshman. Students’ reasoning in 

contexts that are meaningful for them and the history of the domain can be informative 

on specific difficulties and potential starting points concerning concept development 

(e.g., Gravemeijer & Doorman, 1999). 

The second design principle, didactical phenomenology, was developed by Hans 

Freudenthal. Didactical phenomenology aims at confronting the students with 

phenomena that “beg to be organised” by means of mathematical structures  

(Freudenthal, 1983, p. 32). In that way, students are invited to build up mathematical 

concepts. Meaningful contexts, from real life or “experientially real” in another way, are 

sources for generating such phenomena (De Lange, Burrill, Romberg & van Reeuwijk, 

1993; Treffers, 1987). The question, therefore, is to find meaningful problem contexts 

that may foster the development of the targeted mathematical objects. The context 

should be perceived as meaningful and offer an orientation basis for mathematization. 

The last remark leads to the third design principle, the use of emergent models 

(Gravemeijer, Cobb, Bowers & Whitenack, 2000; Van den Heuvel-Panhuizen, 2003). 

In the design phase we try to find problem situations that lead to models that initially 

represent the concrete problem situation, but in the meantime have the potential to 

develop into general models for an abstract world of mathematical objects and relations.  

The expectations of the students’ mental activities triggered by the classroom 

activities are elaborated in a hypothetical learning trajectory (HLT). The notion of a 

“hypothetical learning trajectory” is taken from Simon (1995). Originally, Simon used 

the HLT for designing and planning short teaching cycles of one or two lessons. In our 

study, however, a HLT is developed for teaching experiments that lasted for a longer 



M. Doorman 

AIEM, 15, 2019 
33 

sequence of lessons aiming at a concrete object of learning. As a consequence, the HLT 

comes close to the concept of a local instruction theory (Gravemeijer, 1994).  

The development of an HLT involves the choice or design of instructional activities 

in relation to the assessment of the starting level of understanding, the formulation of 

the end goal and the conjectured mental activities of the students. Essential in Simon’s 

notion of a HLT is that it is hypothetical; when the instructional activities are acted out, 

the teacher – or researcher in our case – will be looking for evidence of whether these 

testable conjectures can be verified, or should be rejected by what kind of observation 

criteria. 

The concept of the HLT may seem to suggest that all students follow the same learn-

ing trajectory at the same speed. This is not how the HLT should be understood. Rather 

than a rigid structure, the HLT represents a learning route that is broader than one single 

track and has a certain bandwidth.  

With an emphasis on the mental activities of the students and on the motivation of 

the expected results by the designer, the HLT concept is an adequate research instrument 

for monitoring the development of the designed instructional activities and the 

accompanying hypotheses. It provides a means of capturing the researcher’s thinking 

and helps in getting from problem analysis to design solutions.  

2.2. Teaching experiments 

The second phase of the design research cycle is the phase of the teaching experi-

ment, in which the prior expectations embedded in the HLT and the instructional ac-

tivities are confronted with classroom reality. The term “teaching experiment” is bor-

rowed from Steffe and Thompson (2000). The word “experiment” is not referring to an 

experimental group - control group design. In this section we explain how the teaching 

experiments were carried out; in particular, we pay attention to the data sampling 

techniques used during the teaching experiments. 

The research questions share a process character: they concern the development of 

understanding of mathematical concepts. Therefore, we focussed on data that reflected 

the learning process and provided insight into the thinking of the students. The main 

sources of data were observations of student practice and interviews with students. The 

observations took place on two levels: classroom level and group level. Observations at 

classroom level concerned classroom discussions, explanations and demonstrations that 

were audio and video taped. These plenary observations were completed by written data 

from students, such as handed in tasks and notebooks. Observations at group level took 

place while the students were working on the instructional activities in pairs or small 

groups. Short interviews were held with pairs of students. In addition to this, the 

observers made field notes. 

The lessons were evaluated with the teachers. In particular, the organisation of the 

next lesson and the content of the plenary parts were discussed. Also, decisions were 

taken about skipping (parts of) tasks because of time pressure. Such decisions were 

written down in the teaching experiment logbook. 

2.3. Retrospective analysis 

The third phase of a design research cycle is the phase of retrospective analysis. It 

includes data analysis, reflection on the findings and the formulation of the feed-forward 

for the next research cycle.  
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The first step of the retrospective analysis concerned elaborating on the data. A 

selection from video and audiotapes was made by event sampling. Criteria for the 

selection were the relevance of the fragment for the research questions and for the HLT 

of the teaching experiment in particular. Data concerning key items (see 2.1) was always 

selected and these selections were transcribed verbatim. The written work from the 

students was surveyed and analysed, especially the work on key items, tests and hand-

in tasks. Results were summarised in partial analyses. This phase of the analysis 

consisted of working through the protocols with an open approach that was inspired by 

the constant comparative method (Glaser & Strauss, 1967; Strauss & Corbin, 1988). 

Remarkable events or trends were noted as conjectures and were confronted with the 

expectations based on the HLT and the instructional activities.  

The second phase of analysis concerned looking for trends by means of sorting 

events and analysing patterns. The findings were summarised illustrated by prototypical 

observations. These conjectures were tested by surveying the data to find 

counterexamples or other interpretations, and by data triangulation: we analysed the 

other data sources, and in particular the written student material, to find instances that 

confirmed, rejected or refined the conjectures. Analysis of the written materials often 

evoked a reconsideration of the protocols. Analysis was continued in this way until 

saturation, which meant that no new elements were added to the analysis and no 

conclusions were subject to change. 

The third phase in analysing the data was the interpretation of the findings and the 

comparison with the preliminary expectations of the HLT. Also, explanations for the 

differences between expectations and findings were developed. These conclusions and 

interpretations functioned as feed-forward for the formulation of new hypotheses for the 

next cycle in the research.  

3. Background and design of HLT 

The aim of this study is to find out how students can learn the basic principles of 

calculus and kinematics by modelling motion. Nowadays, graphs are used in calculus 

and kinematics education as representations for describing change of velocity or 

distance travelled during a time interval. Students are expected to give meaning to the 

relation between distance travelled and velocity through characteristics of these graphs 

such as area and slope. The use of such instructional materials is based on a 

representational view (Cobb, Yackel & Wood, 1992), which assumes that instructional 

materials can represent scientific knowledge, and that scientific concepts can be made 

accessible without fully taking into account the limitations of the knowledgebase of the 

students into which they have to be integrated.  

 
Figure 1. The change in velocity of car a and car b 

What we tried to prevent with this learning route was a kind of reasoning that we 

observed in physics lessons. For instance, when analysing a graph depicting the change 

t (sec)

v (m/sec)

5

a

b
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in velocity of two cars a and b (see Figure 1), most students answered that at the point 

of intersection car a overtakes car b. This pictorial interpretation of what happens at the 

point of intersection, one line passing the other, dominates the thinking of the students, 

and they find it hard to deduce that the only thing you know is that after 5 seconds car a 

and b have exactly the same speed. 

Such interpretations might be caused by a process in which students are not 

sufficiently involved in the construction process of such graphs of motion. The 

continuous graphs are presented to students as if they are self-explanatory. In contrast, 

our learning route is inspired by the potential of students’ graphical inventions when 

asked to represent motion. One of the reported examples concerns the story of a car 

decreasing speed, stopping, and increasing speed. The graphical solutions of the students 

entailed a rich variety of discrete graphs involving dots and dashes representing 

decreasing and increasing intervals (DiSessa, Hammer, Shern & Kolpakowski, 1991). 

Furthermore, the domain history confirmed design choices related to the use of discrete 

graphs to provide students with meaningful tools that afford them a way to reason with 

patterns in differences and taking sums before working with continuous graphs that need 

formalization with limits (Doorman & Van Maanen, 2008).  

The initial task sequence on the basic principles of calculus addresses the so-called 

discrete case of the main theorem of calculus. In this route, the creation, use and 

adaptation of various graphical representations are interwoven with learners’ activities 

in a series of science-practices, from modelling discrete measurements to reasoning with 

continuous models of motion. The trajectory starts with questions about a weather 

forecast. The teacher discusses the change of position of a hurricane with students: When 

will it reach land? (see Figure 2).  

 
Figure 2. Predicted successive positions of a hurricane (12h between positions) 

This problem is posed as a leading question throughout the unit as a context for the 

need of grasping change. After the emergence of time series as useful tools for 

describing change of position, students work with situations that are described by 

stroboscopic photographs. The idea is that students come up with measurements of 

displacements, and that it makes sense to display them graphically for finding and 

extrapolating patterns. Two types of discrete graphs are discussed, namely, interval 

graphs (distances between successive positions) and graphs of the total distance 

travelled. Note that discrete graphs are not introduced as an arbitrary symbol system, but 

emerge as models of discrete approximations of a motion, that link up with prior 
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activities and students’ experiences. By using the computer program Flash1 students are 

able to investigate many situations. During these activities the intention was to shift their 

attention from describing specific situations to properties of these discrete graphs and 

the relation with kinematical concepts. During the first teaching cycle students appeared 

to have difficulties with interpreting and using the graphs provided by the computer tool. 

Consequently, opportunities for students to produce ways of graphing motion before 

they use the tool and guidelines for the teacher how to use students’ ideas for introducing 

the tools were added.  

We focus on students’ contributions during the activities, and how we can build 

upon their contributions towards the intended attainment targets. Consequently, for 

observing and analysing the development in their reasoning we use the design-based 

research approach of planning and testing the envisioned trajectory in classroom 

situations. We are interested in how the trajectory works and can be improved, instead 

of trying to decide whether it works (see Table 1).  

The sequence is tried out and revised during teaching experiments in three tenth-

grade classes. We collected data by video and audio taping whole class discussions and 

group work. The videotapes were used to analyse students’ oral discourses and  written 

materials with respect to the conjectured teaching and learning process. 

Table 1. From hypotheses to observation criteria 

Testable conjectures Observation criteria 

Do students perceive the 

problem situations as intended, 

and fits their reasoning the 

intended development from 

trace graphs? 

In their initial (intuitive) reasoning about the weather 

problems, students refer to the intervals between successive 

positions and relate changing lengths of intervals with 

velocity. Students invent ways to describe and investigate 

patterns in intervals. 

Does the previously planned 

sequence of graphical tools fit 

students’ thinking and foster 

advanced reasoning? 

The way students reason with the graphs changes from 

context-oriented (referring to intervals in the stroboscopic 

pictures) to an orientation on features of and relations between 

interval graphs and graphs of total distances travelled. 

Do the representations in the 

computer tool fit prior 

reasoning and afford advanced 

reasoning? 

Initially, students use the stroboscopic pictures and prior 

activities to signify the graphs. During their work, students 

increasingly use the graphs offered for solving the posed 

problems. As a consequence, they simultaneously invent use 

of and relations between these tools. 

Teaching experiment phase 

We illustrate the change in how students think and talk about a model with an 

episode describing students’ work with the computer program Flash. Initially, while they 

are working with Flash, students refer to distances between successive positions, and 

later on they start reasoning with the global shapes of graphs and their relationships with 

the represented motion. An example of such reasoning concerns a task about a zebra that 

is running at constant speed and a cheetah that starts hunting the zebra. The question is 

whether the cheetah will catch up with the zebra. In the graphs (see Figure 3) the 

successive measurements of the zebra and the cheetah are displayed. In the graph on the 

right can be seen that the zebra (blue) is covering constant distances in equal time 

                                                 

1 http://www.fi.uu.nl/toepassingen/00197/flits_en/balletje.html  

http://www.fi.uu.nl/toepassingen/00197/flits_en/balletje.html
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intervals 1, 2, 3, …, while the distances covered by the cheetah (red) initially increase 

and from time interval 6 decrease. The following discussion takes place between an 

observer and two students (Rob and Anna). 

 

Figure 3. Distance-travelled and interval graphs in Flash 

Observer Oh, yes. So why did you choose the one for the total distance [left graph]? 

Rob Because it’s the total distance that they cover and then you can- 

Anna Then you can see if they catch up with each other. 

Observer And can’t you see that in the other [right graph]? There you can also see that 

the red catches up with blue? 

Rob Yes, but - 

Anna Yes, but that’s at one moment. That only means that it’s going faster at that 

moment but not that it’ll catch up with the zebra. 

Retrospective analysis 

A difference between the interval graph and the distance-travelled graph is the 

difference between the interpretations of the horizontal (time) axis. A value in the 

distance-travelled graph represents a distance from the start until the corresponding time, 

while a value in the interval graph represents a distance in the corresponding time 

interval. Anna’s last observation is an important step in the process of building the model 

of a velocity-time graph (and everything that comes with it). 

The qualitative analyses show that during the practices students re-invent and 

develop graphical symbolisations, as well as the language and the scientific concepts 

that come with them. However, these inventions only became explicit after interventions 

by an observer or by the teacher. We found that the teacher had a crucial role during the 

classroom discussions. It was not always easy to organise the discussions in line with 

the intended process. Sometimes the teacher reacted to students’ contributions in terms 

of the representational inscriptions or concepts aimed at (Meira, 1995; Roth & McGinn, 

1998). In those cases, students awaited further explanation. The discussions appeared to 

be especially productive when the teacher organised classroom discussions about 

students’ contributions in such a way that the students themselves posed the problems 

that had to be solved, and reflected on their answers. In a second teaching experiment 

we arranged a setting where the teacher had more information about the possible 

contributions of the students and the way in which they could be organised. Additionally, 

we designed activities for classroom discussions.  

The HLT for the second teaching experiment is summarized in Figure 4. This 

summary shows how the graphical tools emerge in relation to the task sequence. The 

(discrete) graphs become meaningful tools for the students through their activity with 

analysing patterns in successive intervals in time series and trace graphs. The activity 

on one level creates the need and becomes the signified (the ‘imagery’) for an activity 

with a new, more advanced tool on the next level (Cobb, Gravemeijer, Yackel, McClain 
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& Whitenack, 1997; Van Oers, 2000).  Furthermore, the figure illustrates the interaction 

between the development of these tools and the development of meaning related to the 

mathematical concepts of change. 

In this approach the construction and interpretation of graphs, trace graphs as well 

as the 2-dimensional discrete graphs, and the scientific concepts are rooted in the 

activities of the students. This process has the potential to ensure that the mathematical 

and physical concepts aimed at are connected to students' understanding of everyday 

phenomena. On the basis of our findings we conclude that classroom discussions where 

students discuss their solutions and pose new problems to be solved, are essential for a 

learning process during which symbolisations and knowledge of motion co-evolve. 

Tool Imagery Activity Concepts 

time series (e.g. satellite 

photos, stroboscopic 

pictures) 

real world 

representations 
signify real world 

situations 

predicting motion 

(e.g. in the context 
of weather 

predictions) 

displacements in 

equal time intervals 
as an aid for 

describing and 

predicting change 

should result in a feeling that the ability to 

predict motion with discrete data is an 

important issue 

trace graphs of successive 

locations 

 

signifies a series 

of successive 

displacements in 

equal time 

intervals 

compare, look for 

patterns in 

displacements and 

make predictions by 

extrapolating these 

patterns 

displacements as a 

measure of speed, 

of changing 

positions, but 

difficult to 

extrapolate 

resulting in a willingness to find other 

ways to display intervals for viewing and 

extrapolating patterns in them 

discrete 2-dim graphs 

 

signifies patterns 

in trace graphs 

(and cumulative) 

compare patterns 

and use graphs for 

reasoning and 

making predictions 

about motion (also 

at certain moments: 

interpolate graphs) 

refine your 

measurements for a 

better prediction: 

intervals decrease 

intervals depicting 

patterns in motion; 

linear line of 

summit in graph of 

displacements or 

graph of distances 

traveled; 

problems with 

predictions of 

instantaneous 

velocity 

should result in the need to know more 

about the relation between sums and 

differences, and in the need to know how 

to determine and depict velocity 

Figure 4. The HLT for the second teaching experiment 

The learning process aimed at asked for a careful design of teaching-learning 

trajectories involving an intertwined process of symbol introduction and meaning 
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making. During that process, students get opportunities for creating their own 

constructions and reflecting on them. Realistic contexts proved important in that. 

4. Discussion 

The case study illustrated how an innovative approach for a topic in mathematics 

can be investigated. The use of semiotic theories turned out useful for planning and 

analysing a process of symbolising and development of meaning. The Hypothetical 

Learning Trajectory appeared to be a useful instrument in all phases of this design-based 

research. During the design phase it is the theoretically grounded vision of the learning 

process, which is specified for concrete instructional activities. During the teaching 

experiments, the HLT offers a framework for decisions during the teaching experiment 

and guides observations and data collections. In the retrospective analysis phase, the 

HLT serves as a guideline for data selection and offered conjectures that could be tested 

during the analysis. The final HLT is a reconstruction of a sequence of concepts, tools 

and instructional activities, which constitute the effective elements of a learning 

trajectory. In this manner, the result is a well-considered and empirically grounded local 

instruction theory for the basic principles of calculus. The HLT, together with a 

description of the cyclic process of design and research, enables others to retrace the 

learning process of the research team. Understanding the how and why of the specified 

steps makes it possible to let that learning process become your own and to adapt 

findings to your own context.  

When rigorous designs are implemented in everyday classroom practice, in many 

cases original designs go through a certain mutation which probably leads to adaptations 

which are not under theoretical control (Artigue, 2009). Nevertheless, the local 

instruction theory describes and underpins how the intervention is expected to work and 

helps teachers and instructional designers to adjust and adapt the instructional activities 

in the spirit of the original intentions (De Beer, Gravemeijer & van Eijck, 2018). 

The calculus-example in this paper illustrates design-based research as a systematic 

approach for innovation-oriented studies. The close connections between design and 

theory development is expected to offer teachers and researchers opportunities to 

translate the results to their own teaching or researching practice. Task design is crucial 

in this process for translating theoretical ideas into classroom practices and for 

communicating the main idea among the different communities.  
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Extended abstract 

Innovation in mathematics education needs the involvement of teachers, textbook 

authors, policy makers and researchers. One of the challenges in innovation processes 

is the communication of a key idea among these different communities. Carefully 

designed tasks can afford communication as they have the potential to illustrate a 

theoretical idea and a classroom situation in which this task is enacted. This paper 

sketches the role and importance of instructional design aiming at new and innovative 

local instruction theories in mathematics education. The approach is illustrated with a 

study that investigated how students can be involved in the development of the basic 

principles of the mathematics of change. The study combines design and research in 

three successive phases. In the first phase instructional activities are designed based 

upon prior educational research and an historical exploration of the topic giving rise to 

the importance of discrete models in reasoning about change. One of the example tasks 

is cast within the context of a storyline about a hurricane approaching a coastline. 

Successive positions are given and the pattern between these positions can be 

extrapolated to predict when and where the hurricane will hit the coast. These activities 

are elaborated in a hypothetical learning trajectory that also includes expectations and 

observation criteria about the teaching and learning process. One of the hypotheses is 

that connecting patterns in changing intervals and patterns in total distances travelled 

will support students in developing an understanding of the basic principles of the 

mathematics of change. For example, intervals with a constant length result in a linear 

growth of distance travelled. Furthermore, a computer tool is expected to be helpful in 

supporting students’ further exploration of connections between interval graphs and 

distance travelled graphs. In the following teaching experiment phase the trajectory is 

acted out and data on the actual process are collected. In the phase of the retrospective 

analysis is reflected upon the articulated hypotheses, for instance about the role of the 

hurricane context and the role of the discrete models, by comparing the hypotheses with 

the available data. This approach structures a cyclic process of design and redesign that, 

ideally, is converging into an empirically supported local instruction theory. We argue 

that such an instruction theory together with tasks and illustrative classroom vignettes 

help to communicate the envisioned process of teaching and learning and can create 

opportunities for teachers, textbook authors and researchers to take contextual factors 

into account and to adapt the results for their own research or teaching practice.  
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